
Allowable Axial Stresses in Segmented Columns 
D. W. BARNES AND C. P. MANGELSDORF 

An axially loaded column which is stepped, or one for 
which axial loads and/or reactions are applied at points 
other than its ends, may be referred to as a segmented col
umn. Each segment of such a column has constant prop
erties and constant load along its length. Crane columns and 
pipe supports are typical examples. Frequently such col
umns have eccentric or lateral loads which also produce 
bending, but for determining allowable axial stresses the 
columns may be reduced to forms similar to Fig. 1. 

For elastic behavior, the critical condition in a segmented 
column with a given combination of proportional loads 
usually depends upon a complex interaction between the 
segments such that the whole column may be regarded as 
buckled. The contribution of each segment is a function of 
its properties, its load, and the position of the segment along 
the length of the column. The critical condition for an in
dividual segment is generally unknown, because each 
segment relies on the other segments for its end condi
tions. 

Many methods for determining the critical (Euler) 
loading conditions in elastic segmented columns are 
available (see Refs. 1 through 9). 

When inelastic behavior is involved in one or more of the 
segments, the determination of the ultimate loading con
dition is complicated by the fact that the extent of inelastic 
behavior is dependent upon the unknown load level. This 
problem can be solved by a trial-and-error process, but the 
calculation effort virtually precludes its use as an everyday 
design tool. 

Unfortunately, inelastic behavior in columns is the rule 
rather than the exception. Several semiemperical methods 
for establishing allowable stresses in segmented columns 
have been proposed,^'^^'^^ but they are restricted to two 
segments and only one set of boundary conditions. 

The purpose of this article is to suggest a somewhat more 
rational approach for finding allowable stresses in inelastic 
segmented columns, an approach which has as its basis 
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similar principles to those employed in developing the AISC 
allowable stresses in compression for axially loaded, pris
matic, non-segmented columns. The method proposed here 
requires a knowledge of the elastic critical conditions for 
the column and is also approximate. The basis for the ap
proximation and the limits of the error are included. Al
though cantilever columns are used for illustrative pur
poses, the method is independent of the end conditions. 

DEFINITIONS AND CONCEPTS OF FAILURE 

In order to understand the ultimate condition in a seg
mented column, we must take a fresh look at some familiar 
concepts. We begin by defining a characteristic load P, 
various multiples of which may be acting on the various 
segments, such as in Fig. 1(c). In this example, the top 
segment experiences a load of 2P, the middle segment 3P, 
and the bottom segment carries a total of 6P. In general, 
a segment load will be nP, where n is characteristic of the 
segment, while P is characteristic of the whole column. It 
is assumed that all segment loads will be proportional to 
P and, therefore, in fixed proportion to one another. For 
purposes of discussion, P may be any value between zero 
and the failure condition, however defined. 

It can be shown, though it is reasonable to expect, that 
the elastic or Euler value Pe for a particular segmented 
column, with (1) specified end conditions, (2) given values 
of the moment of inertia for the various segments, and (3) 
fixed proportions between the segment lengths, will vary 
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inversely with the square of the length of the overall col 
umn. In fact, one could say that 

P.= 
{KLY 

(1) 

in which K is the effective length factor and I^jj is some 
effective value of moment of inertia for the whole column. 
The difficulty with such a statement is that both K and Igfj 
are unknown properties, peculiar to the particular geom
etry of the column under consideration. The determination 
of either one would require knowing explicitly how each 
of the segments, with its own particular properties, loading, 
and end conditions, contributed to the critical conditions 
of the whole column. Such knowledge is not available at 
present. 

An equally vague but slightly more useful statement 
would be that 

P.= 
r^EA elL 

{KL/r)\jj ^^^ 

in which A^jj is some effective cross-sectional area for the 
whole column and r is the related effective radius of gyra
tion. \iPe is determined using one of the techniques cited 
above, and Aejj is assumed, it becomes possible to calculate 
the quantity {KL/r)ejj- The dependence of Pg upon this 
fictional Kl/r ratio could be depicted as in Fig. 2. Ob
viously, the horizontal coordinates depend upon the par
ticular value of Aejj assumed, as well as upon the actual 
length of the column. 

Elastic buckling, however, is the ultimate condition only 
for columns which are long enough to fail that way. For 
shorter columns, inelastic behavior takes over and the 
maximum ultimate load, P^ , which a segmented column 
can sustain, no matter how short it is, occurs when the most 
highly stressed (MHS) segment reaches the yield point. 
The MHS segment is that segment for which nP/A is a 
maximum. We designate its area as As arid its characteristic 
load multiple as n .̂ Therefore, 

(3) 

If we now assume in Eq. (2), or in Fig. 2, that A^jj = 
^s/^s , we can show the upper bound on P^ as a function 

(KL/r), 

Figure 3 

of an effective KL/r, for a given column. This bound con
sists of two parts, which are indicated in Fig. 3 and are 
defined by Eqs. (2) and (3). The ultimate value of the 
characteristic load for a specific column might fall below 
one of these two limits, but it would never be larger. 

It should be noted here that the quantity {KL/r)^ is 
actually the dependent variable in Fig. 3, and is the re
pository of all of our ignorance about the interdependence 
of the various segments. It is completely without physical 
significance and might better be represented by a different 
symbol, except for the convenience it will provide later. 
(KL/r)s is defined by the expression 

{KL/rl =V^ ^EA, 
n,Pe 

(4) 

To determine the actual value of P^ for any length of 
column in the inelastic range, it is necessary to specify the 
criteria for inelastic behavior. We adopt the Column Re
search Council's recommendation^2'^^ that such behavior 
be reflected in a reduced effective modulus of elasticity, 
called the tangent modulus, according to the expression 

= ^ ( l - ^ l for ^ Et <fa<Fy (5) 

(When/, < Fy/2, Et = E; when/« =Fy ,Et = 0.) Using 
tangent moduli for segments stressed above Fy/2, it is 
possible to find P^ from elastic analysis.* 

If we consider a special case of the segmented column, 
one which consists of a single segment, or one in which 
nP/A is the same for all segments, then the inelastic ulti-

* The authors have done this by programming Newmark's 
numerical integration technique^ for a cantilever column with 
a potential of up to 100 segments. After Pg has been found, 
each segment stressed at fa > Fy/2 has been assigned an es
timated value of Et and an approximate P^ is determined. 
From the approximate P^ , new stresses are calculated, new 
Et's assigned, and the process repeated until Pu converges. 
Since Newmark's method for elastic columns is itself an it
erative procedure, this approach is not recommended for hand 
calculations. 
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mate load can be found from the equation 

TT^EtAs 
Pu = 

nAKL/r),^ 
(6) 

in which {KL/r)^ can be determined from Eq. (4). Equa
tion (6) appears in our plot of P^ versus {KL/r)^ as the 
dashed line in Fig. 4. It is the familiar parabolic transition 
between simple yielding in very short columns [ {KL/r)s 
= 0] and Euler buckling in long columns [KL/r)s ^ 
V27r^E/Fy]. The latter limit is better known as Q . 

While Eq. (6) is strictly valid only for the special cases 
in which the stresses in all segments are equal, it represents 
a lower bound for the P^ of any segmented column in the 
inelastic range. Any column with at least one segment not 
stressed as much as the M H S segment must necessarily 
have an ultimate load equal to or greater than Eq. (6). This 
is true because any not-so-highly-stressed segment, if it 
makes any contribution to the ultimate condition at all, does 
so with a modulus of elasticity which is greater than if it 
were at the same stress as the M H S segment. Thus , in 
general, the true ultimate load for any segmented column 
in the inelastic range will lie within the cross-hatched area 
of Fig. 4, an area whose limits are defined in terms of Pg 
for the whole column and the properties of the M H S seg
ment. 

ALLOWABLE STRESS CONCEPTS 

In the absence of a readily available technique for deter
mining Pu exactly, it is conservative to assume that P^ for 
any particular column is defined by Eq. (6). If we substitute 
Eq. (5) into Eq. (6), making use of the relation fa = 
UsPu/As, the result is 

P =Mx 1 -
Fy{KL/r)i 

4ir^E 
(7) 

Except for columns in which all segments have the same 
axial stress, Eq. (7) will be approximate. In principle, the 
maximum possible error one could introduce by using Eq. 
(7) is 33 percent (of the lower bound value), when (KL/r)^ 
for the column is A/TT^JE/F (see Fig. 4). In practice the 

error tends to be much smaller, as will be shown later. 

To find an allowable load for the column, we divide Eq. 
(7) by the familiar factor of safety which appears in Sect. 
1.5.1.3.1 of the AISC Specification,^^ with the resuU 
that 

A.^Fy 

Pn = 
n, 

1 
Fy{KL/r)s^ 

Air^E 

5 ^ ?>{KL/r\ 

3 S C 8 Q ^ 

(8) 

Although this allowable load appears to be expressed in 
terms of the M H S segment, it is actually the allowable 
characteristic load for the whole column. The allowable 
stress for the M H S segment is found by dividing Pa by 
As/ris for that segment. Using the relation Cc = 
\^2ir'^E/Fy we have 

F., 

1 -
(ATL/r), 

2C,2 

5 ^ 3{KL/rl 

3 SCc 8C,3 

(9) 

The similarity between Eq. (9) and Formula (1.5-1) of 
the AISC Specification is intentional, for the purpose of 
emphasizing their common bases and limits. From a 
physical point of view, the similarity is superficial. As we 
have noted above, the quantity {KL/r)^ is not found from 
the length, radius of gyration, or end conditions of either 
the whole column, or of the M H S segment. It is found from 
substituting the critical or Euler characteristic load for the 
entire column and the A/n for the M H S segment into Eq. 
(4). 

When Fy of the column corresponds to one of the values 
for Table 1 in Appendix A of the Specification, Fas can be 
determined from the appropriate table using {KL/r)^. If 
Fy is not standard, it is more convenient to recognize 
that 

{KL/r\ 

Cc 

so that Eq. (9) becomes 
= v- (10) 

Fa.= 

1 -
A,F., 

An,P, 

- + - , 
3 8 \2n,P, 

AsFy\V2 AsFyY/2 1 

8 \2nsPej 

(11) 

Equations (9) and (11) are valid between the limits P^ = 
00 [for {KL/r)s = 0] and P^ = A.Fy/lus [for {KL/r)^ = 

When Pg < AsFy/lus , the column is taken as elastic 
and a factor of safety of 23/12 should be used. Thus , 

Pa = 
\2Pe 
23 

(12) 
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Table 1. Summary Of Results For Arbitrary Column Configurations 

Example Problem 

Fy = 36 kips/in.2 

Area Segment 

(in.2) 

Mom. of Inertia 

Segment (in.'^) 
Pe 

(kips) 

M H S 

Segment (KL/r)s 
Fa 

(kips/in.2) 

r.2o" 
20- . 

I00"1 
Ax-

A2-

5. 

50. 

/ i = 11.2 

72 = 312.5 
142.8 

^ 2 = 1 100.1 

Fai = 12.84 

Fa2= 1.28 

i 
60". 

' I 

300" 
- 180",^ 

•—2P 

2 

h ®°'' ^ 

* — 4 P | 

3 

Ai = 18.6 

^2 = 11.9 

Ai = 5.6 

/ i = 429. 

7 2 = 1 6 1 . 

h = 28. 

49.6 

ni = 7 

^2 = 5 

rZ3 = 1 

117.2 
Fai = 9.56 

F^2 = 10.67 

Fa3 = 4.54 

III -2P 

yli = 2 4 . 4 

/}2 = 18.6 

^ 3 = 15.7 

AA = 11.9 

7i = 732. 

72 = 429. 

73 = 300. 

7 4 = 161. 

61.3 

m = 17 
712 = 7 

^ 3 = 6 

^ 4 = 2 

81.9 

F , i = 15.12 

7^,2=8.17 

Fa3 = 8.29 

7 ,̂4 = 3.65 

IV xN 

\' ̂ 
\ <| 

200" 
, 100"^ 

' 1 

L, 100" 1 

•—5P 1 

2 

A, = 5 . 

^ 2 = 3 . 

7i = 20. 

72 = 6.8 
15.9 

n\ = 6 

^ 2 = 1 

122.5 Fai = 9.96 

Fa2 = 2.77 

§ 
"̂  

^20- . 
80-

• 20% 

1—lOP 

2 

20" 

3 

u20"I| 

<—4P1 

4 

-3P 

A i •• 

A2--

A,-

A.-

3.1 

2.8 

2.6 

2.0 

7i = 90. 

72 = 52.5 

73 = 37.5 

74 = 30. 

120.3 

nx = 21 

r22 = l l 

^ 3 = 7 

^ 4 = 3 

18.7 

Fa\ = 21.0 

F , 2 = 12.18 

F,3 = 8.35 

7 ,̂4 = 4.65 

VI 

p20" 

1 1 
^ 
^ 
^ 
•si ' 

1 

. 120" 

•—3.5P 

2 

540' 
60" 

• - P 

3 

. 180" .^o"J 

* — 2 P ^ ^ 5 P ] 

4 5 

k-6P 

Ax • 

A2-

A,' 

A4'-

As'' 

•SOA 

• 15.7 

= 30.8 

= 18.6 

•• 1 5 . 7 

7i = 10266. 

72 = 900. 

73 = 3519. 

7 4 = 1287. 

75 = 900. 

44.1 

nx = 17.5 

712 = 14 

712, — 13 

^ 4 = 1 1 

725 = 6 

85.3 

Fax = 5.73 

Fa2 = 14.71 

Fa3 = 6.96 

7 ,̂4 = 9.76 

Fas = 6.30 

VII 

120" 
60" 

1 

60" 

2 

Ax 

A2 

= 25. 

= 10. 

7i = 100. 

72 = 50. 
416.4 nx '• 

712 '• 

82.9 Fax = 6.01 

Fa2= 15.03 

VIII 

115-

i ^ ^ " - i 

'"7""̂  

^ V 

1 N 

1 

, 40-

#—3P 

30-

< — P ^ 

2 3 

102-
00" J 2: 

-2P 

Ax •• 

A2--

A,--

25. 

8. 

4. 

7i = 100. 

72 = 35. 

73 = 20. 

130.9 

ni = 6 

7Z2 = 3 

rz3 = 2 
66.1 

Fax = 8.08 

7̂ 2̂ = 12.62 

Fa3= 16.83 

IX Ax 

A2 

= 50. 
= 19.4 

Ix- 100. 

50. 
701.7 

rzi = 1 

^ 2 = 1 

89.1 7 .̂1 = 5.54 

Fa2 = 14.28 

180" 

\ 

1 
60- 60" . . 60" J 

• — P 

Ax = 2.77 

A2 = 9.0 

^ 3 = 15. 

7i = 25. 

72 = 75. 

73 = 150. 

49.9 

ni = 2 

712 = 2 

^ 3 = 1 

89.1 
Fax = 14.30 

Fa2 = 4.40 

7^.3= 1.32 
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and the allowable stress for the MHS segment becomes 

\2n,Pe 
F = 

23As 
(13) 

Once the allowable stress in the MHS segment is de
termined, the allowable stress in any other segment is found 
by multiplying the appropriate equation [(9), (11), or (13)] 
by the quantity nAyrisA. This method is valid for all 
grades of steel covered by Sect. 1.5.1.3 (allowable stresses 
in compression) of the Specification. If Fy is different for 
the various segments, the procedure will consistently yield 
reasonable or conservative results only if the MHS segment 
is also the one with the lowest yield stress. For other cases 
of mixed Fy's, the more exact method of determining P^ as 
a basis for Fa is recommended. 

A method similar to the MHS segment procedure is 
given in Ref. 1. It requires, however, that the allowable 
stress in each segment be found from an effective (KL/r) 
for that segment. As a consequence, the allowable stresses 
for segments other than the MHS segment, as determined 
by the method of Ref. 1 may be unconservative to a con
siderable extent. 

SAMPLE CALCULATIONS 

The following two problems are presented to demonstrate 
the simplicity of the proposed procedure. 

Problem 1 

Given: The dimensions and properties of the column 
shown in Table 1, Example VII. 

Find: Fa for both segments. 

Solution: 

1. Determine Pe by any method available. For this column, 
Pe = 416.4 kips. 

2. The most highly stressed (MHS) segment is segment 
2, by inspection. 

3. Calculate {KL/r% from Eq. (4): 

(KL/rl = A / -
'(29,000)(10) 

= 82.9 
(1)(416.4) 

From Appendix A of the AISC Specification: 

Fas = Fa2= 15 .03 ks i* 

4. The allowable stress in the other segment is 

f(i)(io)l 
Fai = 15.03 

(1)(25) 
= 6.01 ksi 

The apparent contradiction posed by the larger segment 
having a lesser allowable stress can be resolved when we 

* As a check, Eq. (11) can be used. 

recognize that there is only one characteristic allowable load 
Pa and it applies to the entire column. Any more than 6.01 
ksi in Segment 1 will be accompanied by overstressing of 
Sgment 2. Unless bending is also present in the column, 
requiring an interaction formula to determine the allowable 
combined stress state in each segment, there is no need to 
calculate Fa for the other segments. 

Problem 2 

Given: The dimensions and properties of the column 
shown in Table 1, Example VIII. 

Find: Fa for all segments. 

Solution: 

1. Pe = 130.9 

2. For Segment 1 
Segment 2 
Segment 3 

6P/25 = 0.24P 
3P/8 = 0.375P 
2P/4 = 0.5P 

Segment 3 is the MHS. 

3. (KL/r)^ = V^'(29,000)(4) = 66.1 

F 
•*• as 

A) 

(2)(130.9) 

Fa3 = 16.83 ksi (AISC Specification, Appendix 

Fax = 16.83 

Fa2= 16.83 

(4)(6) 
(2)(25) 

(4)(3) 

= 8.08 ksi 

(2)(8) 
= 12.62 ksi 

Table 1 shows a variety of columns and loadings that 
have been investigated. The procedure and Fy in all cases 
have been the same. Except as noted above, changing Fy 
does not affect the procedure, only the results. 

DISCUSSION OF ERRORS 

As was indicated earlier, basing all calculations on Pg may 
lead to erroneous, albeit conservative, values of Fa. In Table 
2 the ultimate loads for the examples in Table 1, as deter
mined by both Eq. (7) and by the "exact" procedure, are 
given, with the error shown as a percentage of the for
mer.* 

As demonstrated by Examples III and V, there is no 
obvious relation between the error and how divergent a 
column is from an apparently "rational" (i.e., larger section 
properties for larger segment loads) design. If there were 
such a relation, there would be no need to resort to the 
approximations inherent in Eq. (7). 

* The lower bound value is used as the basis for comparison even 
though it is the inexact one, because it may be the only one 
available to the designer. 
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Table 2. Compare Theoretical P„ With P„ (MHS Method) 

Example 

(see 
Table 1 

for 
Sketch) 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

(1) 

E 
(at failure) 
(kips/in.2) 

Ex = 24,939 

E2 = 29,000 

£ 1 = 28,990 

E2 = 28,457 

£ 3 = 29,000 

Ex = 12,623 

E2 = 29,000 

E2> = 29,000 

E4 = 29,000 

Ex = 28,918 

E2 = 29,000 

^ 1 = 744 

E2 = 28,327 

E3 = 29,000 

E4 = 29,000 

£ 1 = 29,000 

E2= 19,202 

£ 3 = 29,000 

E4 = 28,931 

£5 = 29,000 

Ex = 29,000 

E2 = 14,632 

£1 = 29,000 

E2 = 23,073 

^ 3 = 3,587 

Ex = 29,000 

E2 = 0.0 

£1 =21 ,450 

E2 = 29,000 

£ 3 = 29,000 

(2) 

Ultimate 
Strength 

Method 

(kips) 

123.7 

48.6 

45.1 

15.9 

5.3 

32.0 

306.3 

69.7 

697.6 

37.6 

(3) 

Pu 
( M H S 

Method) 

(kips) 

122.0 

48.6 

40.6 

15.9 

5.3 

31.0 

282.3 

62.2 

523.2 

37.4 

(4) 

% Error 

X 100 

1.4 

— 

11.1 

— 

— 

3.2 

8.5 

12.0 

33.3 

0.5 

To depict how the "exact" ultimate loads for the various 
columns in Tables 1 and 2 compare with one another, and 
with their approximate values given by Eq. (7), Fig. 5 has 
been constructed similar to Fig. 4. The ordinate of Fig. 5 
is now Pu/Py , where Py = A^Fy/us. Example IX was 
selected to demonstrate the maximum possible error when 
{KL/r)s is equal to Q / v ^ . In this case the MHS segment 
clearly makes a negligible contribution to the actual ulti
mate strength of the column, but because it is used as the 
basis for calculating the approximate ultimate strength, the 
large error results. It is interesting to note in comparison 
with Example IX that the "irrational" column of Example 
X has very little error at the same {KL/r)s, because the 
MHS segment in Example X makes a very significant 
contribution to the actual ultimate strength of the col

umn. 

(KL/r) , 

Figure 5 

SUMMARY AND CONCLUSION 

What has been presented are the background and de
scription of a simple process for determining allowable axial 
stresses in inelastic segmented columns. The method is 
independent of end conditions and can be used for columns 
with any number of segments, if the corresponding Euler 
buckling load is known or can be determined. As a basis for 
the approach, similar principles to those employed in the 
development of the AISC allowable compressive stresses 
for axially loaded prismatic columns are used. The pro
cedure is outlined as follows: 

1. Calculate the Euler buckling load 

2. Locate the most highly stressed segment (MHS) by 
dividing the total load on each segment by the area 
of that segment {n X p/A) 

3. (a) If Fy is any of those available in Table 1 of Ap
pendix A of the AISC Specification. 

i. Calculate (ATL/r)^ for the MHS using 
Eq. (4). 

ii. Knowing {KL/r)s, read a value of Fas 
from Appendix A of the AISC Specifi
cation. 

(b) K Fy is not typical, calculate Fas using Eq. (11) 
or (13), as appropriate. 

4. If required, calculate a value of Fa for each of the 
remaining segments by using the expression 

^ FgsA.n 

^ nsA 

Except when all segments are at the same stress, this 
method results in approximate allowable stresses which 
may be conservative, but are never unconservative. When 
the various segments of a column have different yield 
stresses, the procedure may not be valid unless the MHS 
segment is the one with the lowest yield point. 

As with most allowable stress calculations, this procedure 
does not provide a direct guide to efficient or optimum de-
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sign, but only permits the designer to evaluate the safety 
of proportions selected by some other process. If, in addition 
to axial loads, bending moments are present, the designer 
will also need to know allowable stresses in bending, which 
may also be influenced by an absence of lateral support. For 
a design procedure of one type of segmented column, the 
crane column, the reader is referred to Ref. 10 or 11. The 
method of determining allowable axial stresses in these 
references can be replaced by the method of this article. 
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