Box Girder Bridge Design—State of the Art

C. P. HEINS

The information that will be presented herein will pertain to straight and curved steel composite box girder bridges of moderate span length (50–250 ft) that are utilized for highway interchanges. Although the general theories are applicable to larger structures, the design formulas that have been developed and will be given herein are only suitable for the conventional highway bridge.

BRIDGE TYPE

Details—During the past two years, the ASCE Task Committee on Horizontally Curved Steel Box Girder Bridges has conducted a comprehensive survey¹ on the details of box girder bridges (straight and curved). This survey has shown that the number of box girder bridges being built has increased dramatically since 1961, as shown in Fig. 1.

The collected details (geometry) of the 82 reported bridges has been reduced to those shown in Tables 1–3, with the ratios of these dimensions given in Tables 4–6. The various parameters listed in these tables are shown in Fig. 2. These bridges represent typical steel-composite structures, and the data given therein can be used for preliminary design. The bridges generally have internal crossbracing and top lateral bracing with external diaphragms placed only at the support piers.

Section Geometry—In the design of any complex structure in which the section changes and the forces are not readily computed, it is useful to have data or empirical relationships to select plate and girder sizes. Examination of the data presented in Tables 1–3 has resulted in the following general equations:

Single Span:

Ż

$$A_T = 10d \left(1 - \frac{84}{L}\right) \tag{1}$$

$$A_B = 12.9d \left(1 - \frac{92}{L}\right) \tag{2}$$

C. P. Heins is Professor of Civil Engineering, University of Maryland, College park, Md. where

$$A_T, A_B$$
 = total area of the top and bottom flange, re-
spectively, in.²

$$L = \text{span length}, \text{ft} (90 \le L \le 200)$$

d = girder depth, in.

Fig. 1. Frequency of box girder bridge built vs. year built

Fig. 2. Box girder dimensions

Ed. Note: This paper was originally presented at the AISC National Engineering Conference, Los Angeles, Calif., in May 1978.

L (ft)	NB	W_R (ft).	R (ft)	d (in.)	B (in.)	t _b (in.)	t _w (in.)	^b f (in.)	t_f (in.)	heta (deg)	Brace Spac'g (ft)
90	1	6.6	300	36.6	50	1/2	1/2	12	7/8	0	a
109.6	2	12-16	760	52	72	1 ³ / ₈	⁵ /8	18	1	0	11
118.5	4	43-48	1773.8 560.5	48	60	¹ / ₂	¹ / ₂	18	1	0	a
140	4	55.6	600	120	56	2	3/4	24	$1-2^{1}/_{4}$	13.6	25
177	4	55.6	2000	120	56	2 ⁵ /8	3/4	24	2-25/8	13.6	25
208	5	78.8	0	77	61	2	1/2	24	2	13.2	23-26

Table 1. Single-Span Box Bridge Dimensions

^aNot known.

In addition to developing Eqs. (1) and (2), the following general trends were noted:

- 1. Web thickness varied from $\frac{1}{2}$ -in. to $\frac{3}{4}$ -in.
- 2. The ratio of roadway width in feet, W_R , to number of boxes, N_B , varied as $6.5 \le W_R/N_B \le 16.0$, with an average of 12.0.
- 3. Width of box varied between 50 in. and 72 in.
- 4. Maximum thickness of bottom flange was 2 in.
- 5. Width of top flange varied as $W_F = 0.12(L 100) + 12$ with a minimum of 12 in.
- 6. Maximum thickness of top flange was $2\frac{5}{8}$ in.
- 7. Minimum ratio d/L was 1/30, with an average of 1/23.

L (ft)	NB	W _R (ft)	R (ft)	d (in.)	В (in.)	^t b (in.)	t _w (in.)	^b f (in.)	t _f (in.)	θ (deg)	Brace Spac'g (ft)	F _y (ksi)
100 100	3	44	œ	48	72	$+1$ $\frac{1}{2}$ - $\frac{3}{4}$	³ /8	+12 -17	$+ \frac{1}{2}$ $-1\frac{1}{2}$	а	a	36
10 8 108	2	30	162.5	48	57	$+ \frac{5}{16}$ $- \frac{1}{2}$	³ /8	14	5/8	26	15	50
$\frac{111}{111}$	2	42	2885	42	114	$+ \frac{1}{2}$ - $\frac{7}{8}$	3/8	+12 -18	$+1\frac{1}{2}$ $-2\frac{1}{4}$	8	15	50
120 120	3	44	∞	58	68	$+ \frac{5}{8}$ - $\frac{7}{8}$	³ / ₈	+14 -19	$+ \frac{3}{8} -1 \frac{1}{2}$	a	a	36
120 120	2	42	1637	56	108	$+ \frac{7}{16}$ $- \frac{5}{8}$	$+ \frac{7}{16}$ $- \frac{5}{8}$	$^{+21}_{-24}$	+1 $-1^{1}/_{4}$	9	16-8	50
145 145	3	43	~	60	56	$+ \frac{11}{16}$ $- \frac{3}{4}$	7/16	14	$+ \frac{15}{16} -1 \frac{1}{2}$	0	а	50
145 145	3	43	~	60	56	$+ \frac{5}{8}$ $- \frac{11}{16}$	3/8	14	$+ \frac{5}{8} - \frac{13}{16}$	0	a	50
174 174	2	38	2272	71	101	$+ \frac{1}{2}$ - $\frac{3}{4}$	³ / ₈	18 18	$+1\frac{1}{4}$ $-2\frac{1}{2}$	9	24	50
185 185	2	55.6	∞	120	56	$+1$ $\frac{1}{2}$ -2 $\frac{1}{2}$	$+ \frac{3}{4}$ -1	$^{+24}_{-66}$	+1 $-1^{1}/_{8}$	0	a	36
194 214	3	42	2884	63	86	$+1$ $\frac{1}{2}$ -2 $\frac{1}{4}$	3/8	24	2 1/4	0	12	36
217 217	2	55.6	2000	120	56	$+2 \frac{1}{2}$ $-2 \frac{7}{8}$	$+ \frac{3}{4}$ -2	+24 -66	$+1\frac{3}{4}$ -1 $\frac{5}{8}$	0	а	36
220 220	2	55.6	2000	120	56	$+2^{5/_{8}}$ $-3^{1/_{8}}$	$+ \frac{3}{4}$ -2	+24 -66	$+1^{15}/_{16}$ -1 ⁷ / ₈	13.6	a	36

Table 2. Two-Span Continuous Box Bridge Dimensions

Note: + indicates positive moment region. - indicates negative moment region.

^aNot known.

Two Span:

The total plate areas of a two span bridge, shown in Fig. 3, are computed as:

$$A_B^{+} = \frac{1}{K} \left(0.00153L^2 - 0.223L + 13 \right) \tag{3}$$

$$A_B^{-} = 1.17 A_B^{+} \frac{F_y^{-}}{F_y^{+}}$$
(4)

$$A_T^{+} = 0.64 A_B^{+} \tag{5}$$

$$A_T^{-} = 1.6 A_B^{+} \frac{F_y^{-}}{F_y^{+}}$$
(6)

where

 $A_B^+, A_B^- =$ total bottom and top flange areas A_T^+, A_T^- (in.²) in the positive (+) and negative (-) moment regions, as shown in Fig. 3

Fig. 3. Two-span box girder bridge-flange area locations

 F_y = yield point of material, ksi, at section being examined

$$L = \text{span length, ft} (100 \le L \le 220)$$

$$K = N_B F_y d / (W_R \times 600), \text{ where } F_y \text{ is at}$$

$$A_B^+$$

$$W_R$$
 = roadway width, ft

 N_B = number of boxes

Table	3.	Three-Spa	n Continuous	Box	Bridge	Dimensions

L (ft)	N _B	W _R (ft)	R (ft)	d (in.)	В (in.)	t _b (in.)	t_{w} (in.)	^b f (in.)	^t f (in.)	heta (deg)	Brace Spac'g (ft)	n	F _y (ksi)
90 120 90	2	44	716	41	94	7/8	³ /8	$^{+14}_{-22}$	$+ \frac{3}{4}$ -1	0	18 ^b 24	1.33	$^{+36}_{-50}$
93 124 93	2	38	2845	42	114	$+ \frac{1}{2} - \frac{7}{8}$	³ / ₈	+12 -16	+ ⁷ / ₈ -1	9.5	15	1.33	50
102 102 102	2	25	650	51	55 ¹ / ₂	$+ \frac{7}{8}$ $- \frac{7}{8}$ $+ \frac{1}{2}$	— ³ / ₈	а	а	14	10.3	1.0	36
104 160 104	2	38	5730	61	108	$+\frac{3}{4}$ -1	⁷ / ₁₆	+16 -16	+ 1 -2	9.5	15	1.54	50
100 132 122	2	43	1310	54	106 ¹ / ₂	+ ³ / ₄ -1	$+ \frac{3}{8} - \frac{1}{2}$	$^{+24}_{-30}$	$+ 1^{1}/_{4}$ -1 ³ / ₄	14	а	1.08	36
116 131 116	2	33	∞	63	81³/₄	$+ \frac{3}{8} - \frac{3}{4}$	³ / ₈	14	$+ \frac{3}{4}$ $-1\frac{1}{2}$	а	а	1.13	а
166 206 166	4	68.5	1000	55	78	$+1 \frac{1}{4}$ $-2 \frac{1}{4}$ +1	5/8	$^{+20}_{-30}$	$+1^{5}/_{8}$ -3 +1^{5}/_{2}	8	20.6	1.24	50
173 196 172	3	40.5	760	60	92	$+1 \frac{1}{4}$ $-1 \frac{1}{4}$ +1	$+ \frac{7}{8}$ $- \frac{1}{2}$	$^{+20}_{-24}_{+20}$	$+1^{3}/_{4}$ $-2^{1}/_{4}$ +1	0	а	1.14	$^{+36}_{-50}$
174 282 125	2	55.6	2000	120	56	+1 -3 $\frac{1}{8}$ +3 $\frac{1}{8}$	$+ \frac{3}{4}$ -2	+24 -69	+ 1 -1 ⁷ / ₈	13.6	a	1.62	36
100 100 100	2	Var.	874	120	48	$+ \frac{5}{8} - \frac{9}{16}$	$+ \frac{3}{8} - \frac{9}{16}$	16	+ 1 -2	0	10	1.0	$^{+36}_{-44}$

Note: + indicates positive moment region. - indicates negative moment region.

aNot known.

^b At end.

The general data indicates that:

- 1. Web thickness, t_w , varied from $\frac{3}{8}$ -in. to $\frac{3}{4}$ -in.
- 2. W_R / N_B varied as $14 \le W_R / N_B \le 28$, with an average of 20.
- 3. Width of box B, in inches, varied approximately as $B = 2.5[(W_R/N_B) 11]$, with W_R in inches, and $B \ge 55$ in.
- 4. Width of top flange, b_f , varied from 12 in. to 24 in., in accordance with $b_f^+ = 0.12(L 100) + 12$.
- 5. Top flange thickness t_f was less than $2^{1/2}$ in. in all cases.
- 6. $(d/L)_{min} = 1/30$, with $(d/L)_{avg} = 1/25$.

Table 4. Single-Span Box Bridge Geometric Ratios

L (ft)	d/L	L/R	L/t_b	d/B	B/t_b	b_f/t_f
90	0.0339	0.300	2160	0.732	100	13.7
109.6	0.0395	0.144	956.4	0.722	52.4	12.0
118.5	0.0338	0.211	2844	0.800	120	18.0
140	0.0714	0.233	840	2.14	28	10.7
177	0.0565	0.0885	679.2	2.14	17.9	9.14
208	0.0308	0	1248	1.26	30.5	12.0

Table 5. Two-Span Continuous Box Bridge Geometric Ratios

L (ft)	d/L	L/R	L/t_b	d/B	B/t_b	b_f/t_f
100 100	0.040	0	2400	0.667	+144 -96	$^{+24}_{-11.3}$
108 108	0.0370	0.665	4152	0.842	$+182 \\ -114$	$^{+22.4}_{-22.4}$
111 111	0.0315	0.0385	2664	0.368	$+228 \\ -130$	$+8.0 \\ -8.0$
120 120	0.0403	0	2304	0.853	+109 -77.7	$^{+22.4}_{-12.7}$
120 120	0.0389	0.0733	3288	0.519	$^{+247}_{-173}$	$^{+21.0}_{-19.2}$
145 145	0.0345	0	2532	1.07	$^{+81.5}_{-74.7}$	$^{+14.9}_{-9.3}$
145 145	0.0345	0	2784	1.07	$^{+89.6}_{-81.5}$	$\substack{+22.4\\-17.2}$
174 174	0.0340	0.0766	4176	0.703	$^{+202}_{-135}$	$^{+14.4}_{-7.2}$
185 185	0.0573	0	1476	2.14	$\substack{+37.3\\-24.9}$	+24.0 –Closed
194 214	0.0263	0.0707	1596	0.733	+57.3 -38.2	+10.7 -10.7
217 217	0.0461	0.109	1157	2.14	+24.9 -19.5	+13.7 -Closed
220 220	0.0454	0.110	1006	2.14	$+21.3 \\ -17.9$	+12.4 Closed

Three Span:

The total plate areas of a three span bridge shown in Fig. 4 are computed as:

$$A_T^+ = \frac{n}{6.4K} \left(L_1 - 73 \right) \tag{7}$$

$$A_B^{+} = \frac{n}{5K} \left(L_1 - 52 \right) \tag{8}$$

$$A_T^{-} = \frac{n}{2.6K} \left(L_1 - 100 \right) \tag{9}$$

$$A_B^{-} = \frac{1}{Kn} \left(0.964L_2 - 1.65(10^{-3}/L_2^2) - 70 \right) (10)$$

$$A_T^+ = 0.95 A_T^- - 0.011(A_T^-)^2 - 5.4/K \quad (11)$$

$$A_B^{+} = \frac{n}{10K} \left(L_2 - 48 \right) \tag{12}$$

Table 6. Three-Span Continuous	Box	Bridge
Geometric Ratios		

L	d/L	L/R	L/t_b	d/B	B/t_b	b_f/t_f
90 120 90	0.0285	0.168	1644	0.436	107.4	+18.7 14.7
93 124 93	0.0283	0.0436	2976	0.368	+228	$^{+13.7}_{-9.85}$
102 102 102	0.0417	0.157	2448	0.919	$^{+63.4}_{-63.4}$ +111	а
104 160 104	0.0318	0.0279	2556	0.565	+144 -108	$^{+16.0}_{-8.0}$
100 132 122	0.0341	0.101	2114	0.507	+142 -107	$^{+19.2}_{-17.1}$
116 131 116	0.0401	0	4188	0.771	$^{+218}_{-109}$	$^{+18.7}_{-9.33}$
166 206 166	0.0223	0.206	2472	0.705	+62.4 -34.7 +78.0	$^{+12.3}_{10.0}_{+12.3}$
173 198 172	0.0253	0.261	2376	0.652	+73.6 73.6 +92.0	+11.4 -10.7 +20.0
174 282 125	0.0355	0.141	1082	2.14	+56.0 17.9 +17.9	+24.0 -36.8
100 100 100	0.100	0.114	2136	2.5	$^{+76.8}_{-85.3}$	+16.0 -8.0
	1	1	1	1	1	1

Fig. 4. Three-span box girder bridge-flange area locations

where

 $90 \le L_1 \le 180 \text{ (ft)}$ $100 \le L_2 \le 290 \text{ (ft)}$ $n = L_2/L_1$ $K = \frac{N_B(F_y)d}{2}$

$$(W_R \times 600)$$

 F_y = specified yield point of material at section being examined

A study of the data indicates that:

- 1. Web thickness, t_w , varies from $\frac{3}{8}$ -in. to $\frac{7}{8}$ -in.
- 2. W_R/N_B varies as $12.5 \le W_R/N_B \le 22$, with an average of 18.0.
- 3. The width of the box varies as $B = 7.43[(W_R / N_B) 5.0]$, with $B_{min} = 55$ in. and $B_{max} = 114$ in.
- 4. The top flanges had geometry of $\frac{3}{4} \le t_f \le 3$ and $12 \le b_f \le 30$.
- 5. $(d/L_2)_{min} = 1/40$ with $(d/L_2)_{avg} = 1/30.5$.

LOAD DISTRIBUTION

Straight Bridges—the AASHTO specification² provides design criteria for evaluation of the induced bending moment in straight composite multi-box girder bridges of moderate length. This provision, based on research work by Mattock³ and the box girder geometry listed in Tables 7 and 8 and Figs. 5–8, is Sect. 1.7.103:

"The live load bending moment for each box girder shall be determined by applying to the girder the fraction W_L of a wheel load (front and rear) according to the following:"

$$W_L = 0.1 + 1.7R + \frac{0.85}{N_w} \tag{13}$$

where

$$R = \frac{N_w}{\text{number of box girders}}, \quad 1.5 \ge R \ge 0.5$$

 $N_{\omega} = W_c / 12$, reduced to nearest whole number W_c = roadway width between curbs, ft

Fig. 5. Actual braced section

Fig. 6. Modeled braced section

Curved Bridges—If the bridge system is composed of curved box girders, then resistance of these elements to the applied live load is accomplished by interaction of torsion and bending. This interaction creates a highly indeterminate situation and, in general, requires utilization of a computer program.⁴ In order to minimize the need for a computer solution, the response of the typical composite sections, shown in Figs. 7 and 8 and Tables 9 and 10, have been studied when subjected to live loading with the radius $200 \le R \le 10,000$ ft. The resulting maximum moments were then related to those in the straight system as a function of W_L , as given by Eq. (13). The resulting equation is:

$$W_{L_c} = (1440X^2 + 4.8X + 1)W_L \tag{14}$$

where

 W_{L_c} = curved girder load distribution for moment

 W_L = straight girder load distribution

X = 1/R

R =center line radius of bridge system, ft

Fig. 7. Actual composite section

ESTIMATED CURVED GIRDER FORCES

The effect that curvature has on the internal bending moment of a box section, when subjected to truck live load, can be determined readily by using Eqs. (13) and (14). The determination of dead load moment for a curved simple span box can also be readily determined by applying the following.

Fig. 8. Modeled composite section

Dead Load

Bending—The dead load bending moment^{5,6} is evaluated from:

$$M_c = (KD)(wL^2/8) \tag{15}$$

where

$$KD = 1 + \frac{1}{10(R/L)^2}$$

Table	7.	Dim	ensions	of	Braced	Sections
I those	••		C11010110	U .	Dracea	Occuoind

Bridge	Span	Dimensions (in.)									
Биаде Туре	(ft)	A	В	С	D	<i>T</i> 1	<i>T</i> 2	T3	<i>T</i> 4	<i>T</i> 5	
2L 2G 3L 3G 4L 4G	50	108 98 92	96 86 80	12 12 12	19.44 19.47 19.50	$\begin{array}{c} 0.625 \\ 0.5625 \\ 0.5 \end{array}$	0.375 0.375 0.375	0.5 0.5 0.5	0.0878 0.0980 0.105	0.217 0.224 0.222	
2L 2G 3L 3G 4L 4G	100	110 99 92	96 86 80	14 13 12	48.125 48.125 48.125	$1.0 \\ 1.0 \\ 1.0$	$\begin{array}{c} 0.5 \\ 0.4375 \\ 0.4375 \end{array}$	0.75 0.75 0.75	0.0878 0.0980 0.105	$0.331 \\ 0.348 \\ 0.352$	
2L 2G 3L 3G 4L 4G	150	110 99 92	96 86 80	14 13 12	74.75 74.75 74.75	1.5 1.5 1.5	$\begin{array}{c} 0.625 \\ 0.5625 \\ 0.5625 \end{array}$	1.0 1.0 1.0	0.0878 0.0980 0.105	$0.458 \\ 0.479 \\ 0.483$	

Table 8. Dimensions of Composite Sections

		Dimensions (in.)										
Bridge Type	(ft)	A'	<i>B'</i>	<i>C'</i>	D'	E'	F'	T1'	T2'	T3'	T4'	<i>T</i> 5′
2L 2G 3L 3G 4L 4G	50	192 172 160	., 96 86 80	12 12 12	19.44 19.47 19.50	25.75 25.75 25.75	42.0 37.0 34.0	$\begin{array}{c} 0.625 \\ 0.5625 \\ 0.5 \end{array}$	0.375 0.375 0.375	0.5 0.5 0.5	$\begin{array}{c} 0.0878 \\ 0.0980 \\ 0.105 \end{array}$	0.947 0.955 0.958
2L 2G 3L 3G 4L 4G	100	192 172 160	96 86 80	14 13 12	$\begin{array}{r} 48.125 \\ 48.125 \\ 48.125 \\ 48.125 \end{array}$	54.625 54.625 54.625	41.0 36.5 34.0	1.0 1.0 1.0	$0.5 \\ 0.4375 \\ 0.4375$	0.75 0.75 0.75	$0.0878 \\ 0.0980 \\ 0.105$	1.019 1.030 1.033
2L 2G 3L 3G 4L 4G	150	192 172 160	96 86 80	14 13 12	$74.75 \\ 74.75 \\ 74.75 \\ 74.75$	81.5 81.5 81.5	41.0 36.5 34.0	1.5 1.5 1.5	$0.625 \\ 0.5625 \\ 0.5625$	1.0 1.0 1.0	$\begin{array}{c} 0.0878 \\ 0.0980 \\ 0.105 \end{array}$	1.092 1.106 1.108

L = span length, ft

$$R =$$
radius to center line of box, ft

w = dead load per unit of length

Torsion—The induced torsional dead load force can similarly be determined by:

$$T_c = (0.75e)(wL)$$
 (16)

where e = center line offset of the curved box.

Live Load

Torsion—The live load bending effect is found by Eqs. (13) and (14). The torsional force is estimated as follows:

$$T_c = 72N_T(0.95e + \overline{X}) \tag{17}$$

where 72 represents the gross weight of AASHTO truck, and

 N_T = number of trucks on box

- \overline{X} = eccentricity from center line of box to resultant of laterally positioned trucks
- e = center line offset of curved box

Table 9. Section Properties of Modeled Braced Sections

Bridge Type	Span (ft)	Y (in.)	I_{χ} (in. ⁴)	$\frac{K_T}{(\text{in.}^4)}$	<i>I</i> _w (in. ⁶)	D_{w} (in. ⁶)
2L 2G	50	6.94	6,550	18,900	3,220,000	1,620,000
3L 3G		7.16	6,090	17,000	2,200,000	1,230,000
4L 4G		7.21	5,720	15,600	1,710,000	1,020,000
2L 2G	100	18.6	67,400	140,000	9,450,000	18,400,000
3L 3G		18.9	61,700	118,000	2,940,000	13,500,000
4L 4G		19.1	58,300	107,000	1,720,000	11,100,000
2L 2G	150	30.3	236,000	378,000	3,710,000	68,000,000
3L 3G		30.7	216,000	311,000	216,000	49,500,000
4L 4G		31.0	205,000	280,000	528,000	41,300,000

Table 10. Section Properties of ModeledComposite Sections

			•			
Bridge Type	Span (ft)	Y (in.)	I_{χ} (in. ⁴)	K_T (in. ⁴)	I_{W} (in. ⁶)	$\begin{array}{c} D_{\mathcal{W}} \\ (\mathrm{in.}^6) \end{array}$
2L 2G	50	19.8	27,200	56,800	3,640,000	8,280,000
3L 3G		19.8	24,700	49,100	2,170,000	6,140,000
4L 4G		19.7	23,100	44,600	1,540,000	5,050,000
2L 2G	100	37.8	178,000	250,000	15,800,000	67,800,000
3L 3G		37.9	159,000	197,000	16,400,000	48,400,000
4L 4G		37.8	150,000	176,000	15,400,000	40,100,000
2L 2G	150	52.1	511,000	551,000	98,700,000	228,000,000
3L 3G		52.3	460,000	433,000	101,000,000	164,000,000
4L 4G		52.1	433,000	385,000	92,400,000	137,000,000

 I_{χ} = bending stiffness

 K_T = pure torsional constant

 I_w = warping constant

 D_w = distortional constant

Bending Normal Stress

Fig. 9, Bending normal stress

Fig. 10. Bending shearing stress

BENDING AND TORSIONAL STRESSES

Straight Bridges—A straight box girder, when subjected to live loads, will develop bending stresses. The inducement of torsional stresses may occur when the loading is eccentric to the shear center. However, in general, such effects are neglected. Thus the stresses that are considered are:

$$f_b = M/S \tag{18}$$

and

$$\tau = VQ / It \tag{19}$$

where

M = induced bending moment in the box

S = section modulus

V = induced bending shears in the box

Q =statical moment

- \tilde{I} = moment of inertia
- t = plate thickness

These typical stresses are shown in Figs. 9 and 10.

Curved Bridges—As in the case of straight bridges, curved bridges will develop bending stresses. However, due to the curvature of the bridge, torsional forces will also develop; the magnitude of these will depend on the cross-sectional geometry, span length, and radius.

Pure Torsion—Any section, open or closed, when subjected to a torsional loading, will resist (in part) the applied torque by pure torsion given by:

$$T_{PT} = GK_T \phi' \tag{20}$$

where

 K_T = torsion constant

G = shear modulus

 ϕ' = rate of change of rotation per unit length

Equation (19) is probably more familiar in the following form:

$$T = GK_T \frac{\phi}{L}$$
 or $\phi = TL/GK_T$

as given in texts on strength of materials.

The evaluation of the torsion constant K_T is dependent on whether the box section is open or completely closed, where "closed" would represent a composite or braced section. The determination of K_T is given⁷ by the following:

Open box:

$$K_T = \frac{1}{3} \sum bt^3 \tag{21}$$

where

b = larger plate dimension

t = smaller plate dimension for same element

Closed box:

$$K_T = 4A_0^2 / \oint \frac{ds}{t} \tag{22}$$

where

 A_0 = enclosed area of box section, wR to center line of elements

ds = length of a given element

t = corresponding thickness of that element

Fig. 11. Pure shearing stress, τ_{PT}

Fig. 12. Normal warping, f_w

A comparison of the stiffness K_T for typical open/closed box sections¹ indicates that $K_{T_{closed}} = 10^4 \times K_{T_{open}}$. Thus, if one can structurally close a box section, tremendous torsional stiffness can be achieved.

The induced shearing stresses are given by

$$\tau_{PT} = \frac{T_{PT}t}{K_T}$$
(23)

where t = plate thickness of any element.

Warping Torsion—When a thin-walled section is subjected to torsional loading, the elements do not retain their shape and thus warp. This warping will induce normal stresses and shearing stress, which can be substantially significant in open sections. The general warping normal stress is

$$f_w = BiW_n / I_w \tag{24}$$

and warping shear is given by

$$\tau_w = \frac{ES_w}{t} \phi''$$

where

 $Bi = EI_w \phi'' =$ warping moment or bimoment

- W_n = normalized warping function
- I_w = warping constant

 ϕ = total angle of rotation, radians

 S_{ω} = warping statical moment

These three induced stresses, for a closed box, are shown in Figs. 11–13.

Limiting Effects—The determination of all stresses in a curved box is difficult, due to bending and torsion interaction. Thus, it would be desirable to determine if it is necessary to evaluate both warping and pure torsional stresses in a box girder bridge.

A recent study⁸ has indicated that for a central angle θ between 0 and 0.5 and $\psi \ge 10 + 40\theta$, warping can be disregarded; for θ between 0.5 and 1.0 and $\psi \ge 30$, warping is negligible, where $\psi = L[GK_T/EI_w]^{1/2}$. A study of many curved bridge systems and their respective ψ parameters, as shown in Fig. 14, shows that for single closed box units, $\psi \ge 30$; thus warping can be disregarded, providing the section is closed.

Pure torsional stress can be disregarded when $\psi \leq 0.4$.

Fig. 13. Warping shear, τ_w

Fig. 16. Distortional stresses

Fig. 15. Shear distortion

DISTORTIONAL STRESSES

In the development of the general torsional equations, it is assumed that the section retains its shape during deformation and final stress evaluation. However, when a box section is subjected to torsional loadings, its cross section does not retain its shape,^{9,12} as shown in Fig. 15. Such a response will create additional stress in the section and will include a normal stress, a shearing stress, and a corner bending moment, as shown in Fig. 16. In order to inhibit such a response, internal diaphragms can be used⁵ and thus minimize the stress development.

The required spacing and size of such bracing will be discussed in the next section.

BRACING

Top Lateral Bracing—As discussed in the section on Bending and Torsional Stresses, the torsional stiffness K_T can be substantially increased if a box section is completely closed. Examination of Figs. 17 and 18 shows a box section with top lateral bracing. This bracing can be converted⁹ into an equivalent thickness by the following equation:

$$t_{eq} = \frac{E}{G} \frac{2A_d}{b} \cos^2 \alpha \, \sin \alpha \tag{25}$$

A study of various curved box elements, subjected to induced bending and warping normal stresses, has indicated that for $1 \le b/d \le 3$ (width of box to depth of box) and a stress ratio $\le 10\%$, $t_{eq} \le 0.050$ in., as shown in Fig. 19.

Fig. 17. Top lateral bracing

Thus, the bracing area required would be:

 $A_d(\text{in.}^2) \ge 0.03b$

where b = bottom flange width, in.

In addition to minimizing the warping stress, the section becomes closed and thus $\psi \ge 10$, which also satisfies the warping criteria.

Fig. 18. Top lateral bracing

Diaphragm Bracing—As indicated previously, the minimization of normal stresses due to distortion can be achieved by placement of internal cross-diaphragms, shown in Fig. 20. A study by Heins and Olenik⁵, using the typical sections shown in Tables 7 and 8, has resulted in the following general equation:

$$\frac{f_d}{f_b} = \frac{(10L - 350)}{R} \frac{S^2}{L^2}$$
(27)

where

$$f_d$$
 = induced dead load distortional normal stress

 f_b = induced dead load bending normal stress

L = span length, ft

$$R = radius, ft$$

S = diaphragm spacing, ft

Fig. 19. Warping ratio vs. equivalent plate thickness

Fig. 20. Internal diaphragms

Examination of the induced live load ratio effect gives:

$$\left(\frac{f_d}{f_b}\right)_{LL} = \frac{3}{4} \left(\frac{f_d}{f_b}\right)_{DL} \tag{28}$$

where subscripts LL and DL represent live load and dead load, respectively.

Combining Eqs. (27) and (28) and permitting a maximum stress ratio of 10%, required diaphragm spacing is:

$$S \le L \left(\frac{R}{200L - 7500}\right)^{1/2} \le 25 \text{ ft}$$
 (29)

The effect of the diaphragm stiffness, Q, on the induced distortion stress¹⁰ is shown in Fig. 21. For $Q \ge 100$, the

induced distortional stress does not change, indicating a rigid diaphragm. Therefore, setting Q = 100 and solving for

 $A_b = \frac{Qb \cos\alpha}{2 E d^2} \cdot \frac{K_1 S}{E}$

gives

$$A_b = 75 \frac{Sb}{d^2} \frac{t_w^3}{(d+b)}$$
(30)

where

 A_b = area of one diagonal brace, in.

S = diaphragm spacing, in.

d = depth of box, in.

- b = width of box, in.
- α = angle between diagonal brace and horizontal (Fig. 21)

$$t_w =$$
 web thickness, in

$$\frac{\mathbf{K}_1}{E} \cong \frac{2 \iota_w}{(d+b)} \quad (\text{Ref. 9})$$

DESIGN SPECIFICATION

As of this date, the AASHTO specifications pertain only to straight box girders. There is, however, a set of specifications available to the engineer, which have been developed during a comprehensive project¹¹ called CURT. These specifications relate to both curved I and box girder bridges and refer to the current AASHTO specifications as needed.

A summary of these proposed specifications is given in Table 11. Examination of this table shows the similarity to the present straight box girder design criteria.

Fig. 21. Distortional stress vs. diaphragm stiffness

Item	Curved I Girder	Curved Box Girder	
Compression Flange		$F_b = 0.55 F_y \left[1 - \frac{(l/r)^2 F_y}{4\pi^2 E} \right] \rho_B \rho_W$ (Note: See Table 12 for values of $\rho_B \rho_W$.)	
	$b/t \le 4400/\sqrt{F_y}$	Positive moment region: $b/t \le 4400/\sqrt{F_y}$ Negative moment region: $b/t \le (6140/F_y)X$ $X = 1 + \frac{4}{3} \left(\frac{f_v}{F_y} - 0.15 \right) \ge 1.0$	
		Bottom flange: $I_{s} = \phi t^{3}w$ $\phi = 0.07 k^{3}n^{4} \text{ for } n > 1$ $= 0.125k^{3} \text{ for } n = 1$ $k = \text{buckling coefficient} \leq 4$ $n = \text{number of longitudinal stiffeners}$ $k_{b},k_{s} = \text{buckling coefficient for compression and shear,}$ $\operatorname{respectively, where } 4 \geq k_{b} \geq 2$ For flange (including stiffeners) having an allowable stress same as for tension flange: $\frac{w}{t} \leq \frac{3070\sqrt{k}}{\sqrt{F_{y}}} X_{1}$ $X_{1} = 1 \text{ for } n = 1$ $= 0.93 + \left(1.6 - \frac{k}{k_{s}}\right) \left(\frac{f_{v}}{F_{y}}\right) \geq 1.0 \text{ for } n > 1$ $k_{s} = \frac{5.34 + 2.84 \sqrt[3]{T_{s}/wt^{3}}}{2(n + 1)} \leq 5.34$ If $\frac{w}{t} > \text{above, but} \leq \frac{6650\sqrt{k}}{\sqrt{F_{y}}} X_{2} \text{ or } 60$: $F_{b} = \left[0.326F_{y} + 0.224F_{y} \sin(\pi/2) \left(\frac{6650\sqrt{k}X_{2} - (w/t)\sqrt{F_{y}}}{6650\sqrt{k}X_{2} - 3070\sqrt{k}X_{1}} \right) \right] C$ $C = \sqrt{1 - 9.0} \left(\frac{f_{v}}{F_{y}} \right) + 0.1 \left[\left(\frac{k_{b}}{k_{s}} \right) - 5.34 \right]^{2} \left(\frac{f_{v}}{F_{y}} \right)$ If $\frac{w}{t} > \frac{6650\sqrt{k}}{F_{y}} X_{2}$, but < 60: $F_{b} = 14.4k(t/w)^{2} C \times 10^{6}$ or $F_{b} = \left[14.4k \left(\frac{t}{w} \right)^{2} \times 10^{6} \right] - \frac{f_{v}^{2}k}{14.4k_{s}^{2}(t/w) \times 10^{6}}$ which we have a malker.	
Tension Flange	$f_w + f_b \le 0.55 \ F_y$	$F_b = 0.55 F_y [1 - 9.2 (f_v / F_y)^2]^{1/2}$ $f_v \le 0.33 F_y$	
Web Plate (No longitudinal stiffeners)	For a U For a t	$d_o /R \le 0.02:$ se AASHTO Spec. Art. 1.7.70(A). $d_o /R > 0.02:$ $\ge \frac{D\sqrt{f_b}}{23,000} (\psi)$ but not less than $D/170$ $= 1.19 - 10(d_o/R) + 34(d_o/R)^2$ where d_o = actual distance between transverse stiffeners, in. R = radius of girder curvature, in.	

Table 11. Summary of Proposed	Design Specifications (Ref. 11)
-------------------------------	---------------------------------

~

(cont'd next page)

Item	Curved I Girder	Curved Box Girder	Detail
Web Plate (Single longitudinal stiffener)	$t = \frac{D\sqrt{f_b}}{46,000} \left(\frac{1}{\psi}\right)$ but not less than $\psi = 1 - 2.9 \left(\frac{d_o}{R}\right)$	$\frac{D}{340}$) ^{1/2} + 2.2 $\left(\frac{d_o}{R}\right)$	
Web Plate (Transverse intermediate stiffen e rs)	AASHTO Spec. Art. 1. $I_s \ge d_o t^3 f / 10.92$ $J = [(25D^2/d^2) - 20]$ $X = \frac{1.0 + [(d/D))}{1775}$ when $0.78 \le d/D$ $d \le 11,000 t / \sqrt{f_v}$ (reforming $Z = 0.95d^2/Rt$ Note: If $t \ge D\sqrt{f_v} / 750$	7.71 applies, except $ X \ge 5$ $0.78 Z^4$ ≤ 1.0 and $0 \le Z \le 10$ eq'd spacing of stiffeners) 00, no stiffener req'd.	
Longi- tudinal Stiffeners	$I_{s} = Dt^{3} \left[2.4 \left(\frac{d_{o}^{2}}{D^{2}} \right) - t_{s} = b' \sqrt{f_{b}}/2250$ $r \ge d_{0} \sqrt{F_{y}}/23,000$ where $I_{s} = \text{moment of inert}$ r = radius of gyratic Note: In computing I_{s} a web strip $\le 18t$ shall b of the longitudinal stiffer	-0.13 ia of stiffener on of stiffener and r , a centrally located e considered as part ener.	$18t \qquad \qquad$
Shear Connectors	$P_{c} = \text{force on a connector}$ $= \left(\overline{P}^{2} + F^{2} + 2\overline{P}F \sin \frac{\theta}{2}\right)^{1/2} \le \phi S$ $\phi = 0.85$ $S_{u} = \text{ultimate strength of connector [set}$ $\overline{P} = P/N$ $N = \text{ no. of conn. between pts. adjacent end supports or or between pts. of max. n dead load points of contrates of the set of max. P = 0.85f'_{c} bc \text{ or } A_{s}F_{y} \text{ [which of max. pos. moment. At AASHTO Spec. Art. 1.7.}$ $F = \frac{P(1 - \cos\theta)}{4KN_{s}\sin(\theta/2)}$ $\theta = angle subtended between and adjacent pt. of contrates and pt. of contrates and pt. of contrates and pt. of con$	e AASHTO Spec. Art. 1.7.100 (A) (2)] of max. pos. moment and dead load points of contraflexure, eg. moment and adjacent tflexure never is smaller at pts. pts. of neg. moment, see .100 (A)(2)] pt. of max. moment (pos. or neg.) flexure or support incl. cover plates	

Table 11 (cont'd). Summary	of Pro	posed Design	Specificatio	ns (Ref.	11)
----------------------------	--------	--------------	--------------	----------	-----

	C						l/b					
$\frac{l}{R}$	$\frac{f_{W}}{f_{b}}$	7	8	9	10	12	14	16	18	20	22	24
	0.50	0.74	0.75	0.75	0.75	0.75	0.76	0.76	0.76	0.77	0.77	0.77
	0.25	0.84	0.84	0.35	0.85	0.85	0.85	0.86	0.86	0.87	0.87	0.87
0.008	0.00	0.95	0.94	0.93	0.93	0.91	0.90	0.89	0.87	0.86	0.85	0.84
	-0.25	0.77	0.77	0.76	0.76	0.75	0.75	0.74	0.73	0.73	0.72	0.72
	-0.50	0.65	0.65	0.65	0.65	0.64	0.64	0.64	0.63	0.63	0.63	0.63
	0.50	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.75	0.75
	0.25	0.83	0.83	0.83	0.83	0.84	0.84	0.84	0.84	0.84	0.84	0.84
0.010	0.00	0.93	0.93	0.92	0.91	0.89	0.88	0.86	0.85	0.83	0.82	0.81
	-0.25	0.76	0.76	0.75	0.75	0.74	0.73	0.72	0.71	0.70	0.70	0.69
	-0.50	0.64	0.64	0.64	0.63	0.63	0.62	0.62	0.61	0.61	0.61	0.60
	0.50	0.72	0.72	0.72	0.72	0.71	0.71	0.71	0.71	0.71	0.70	0.70
	0.25	0.81	0.81	0.81	0.81	0.81	0.80	0.80	0.80	0.80	0.80	0.79
0.014	0.00	0.91	0.90	0.89	0.88	0.86	0.84	0.82	0.80	0.78	0.76	0.75
0.011	-0.25	0.74	0.74	0.73	0.72	0.71	0.69	0.68	0.67	0.66	0.65	0.64
	-0.50	0.63	0.62	0.62	0.61	0.60	0.59	0.59	0.58	0.57	0.56	0.56
	0.50	0.71	0.70	0.70	0.70	0.69	0.69	0.68	0.68	0.67	0.67	0.66
	0.25	0.80	0.79	0.79	0.79	0.78	0.78	0.77	0.77	0.76	0.76	0.75
0.018	0.00	0.89	0.87	0.86	0.85	0.82	0.80	0.78	0.76	0.74	0.72	0.70
0.010	-0.25	0.72	0.71	0.71	0.70	0.68	0.66	0.65	0.63	0.62	0.61	0.60
	-0.50	0.61	0.60	0.60	0.59	0.58	0.57	0.56	0.55	0.54	0.53	0.52
	0.50	0.69	0.69	0.68	0.68	0.67	0.66	0.66	0.65	0.64	0.64	0.63
	0.25	0.78	0.78	0.77	0.77	0.76	0.75	0.74	0.73	0.73	0.72	0.71
0.022	0.00	0.87	0.85	0.83	0.82	0.79	0.76	0.74	0.72	0.69	0.67	0.65
0.044	-0.25	0.71	0.70	0.68	0.67	0.65	0.64	0.62	0.60	0.59	0.57	0.56
	-0.50	0.60	0.59	0.58	0.57	0.56	0.54	0.53	0.52	0.51	0.50	0.49
	0.50	0.68	0.67	0.67	0.66	0.65	0.64	0.63	0.63	0.62	0.61	0.60
	0.25	0.77	0.76	0.76	0.75	0.74	0.73	0.72	0.71	0.70	0.69	0.68
0.026	0.00	0.85	0.83	0.81	0.79	0.76	0.73	0.71	0.68	0.66	0.64	0.62
0.040	-0.25	0.69	0.68	0.66	0.65	0.63	0.61	0.59	0.57	0.56	0.54	0.53
	-0.50	0.58	0.57	0.56	0.55	0.54	0.52	0.51	0.49	0.48	0.47	0.46
	0.50	0.67	0.66	0.65	0.65	0.64	0.62	0.61	0.60	0.60	0.59	0.58
	0.25	0.76	0.75	0.74	0.73	0.72	0.71	0.69	0.68	0.67	0.66	0.66
0.030	0.00	0.83	0.81	0.79	0.77	0.74	0.70	0.68	0.65	0.63	0.60	0.58
0.000	-0.25	0.67	0.66	0.65	0.63	0.61	0.59	0.56	0.55	0.53	0.51	0.50
	-0.50	0.57	0.56	0.55	0.54	0.52	0.50	0.48	0.47	0.46	0.45	0.43
	0.50	0.64	0.63	0.62	0.62	0.60	0.59	0.57	0.56	0.55	0.54	0.53
	0.25	0.73	0.72	0.71	0.70	0.68	0.66	0.65	0.64	0.62	0.61	0.60
0.040	0.00	0.78	0.76	0.74	0.71	0.68	0.64	0.61	0.58	0.56	0.53	0.51
0.010	-0.25	0.64	0.62	0.60	0.59	0.56	0.53	0.51	0.49	0.47	0.45	0.44
	-0.50	0.54	0.52	0.51	0.50	0.48	0.46	0.44	0.42	0.41	0.39	0.38
	0.50	0.62	0.61	0.60	0.59	0.47	0.56	0.54	0.53	0.52	0.51	0.50
	0.25	0.70	0.69	0.68	0.67	0.65	0.63	0.61	0.60	0.59	0.58	0.55
0.050	0.00	0.74	0.71	0.69	0.67	0.63	0.59	0.56	0.53	0.50	0.48	0.45
	-0.25	0.60	0.58	0.57	0.55	0.52	0.49	0.46	0.44	0.42	0.40	0.39
	-0.50	0.51	0.49	0.48	0.47	0.44	0.42	0.40	0.38	0.37	0.35	0.34
	1				L	L		1	1		L	1

Table 12.	Curvature	Reduction	Factor DRDW	for	Allowable Stress
I dibite I m.	Guivacuic	neudetion	- accor pBpW	-0-	The trable beress

(cont'd next page)

$\frac{l}{R}$	£						l/b					
	$\frac{f_{W}}{f_{b}}$	7	8	9	10	12	14	16	18	20	22	24
	0.50	0.60	0.59	0.58	0.57	0.55	0.53	0.52	0.51	0.50	0.49	0.48
	0.25	0.68	0.67	0.66	0.64	0.62	0.60	0.59	0.57	0.56	0.52	0.49
0.060	0.00	0.70	0.68	0.65	0.63	0.58	0.54	0.51	0.48	0.45	0.43	0.41
	-0.25	0.57	0.55	0.53	0.51	0.48	0.45	0.43	0.40	0.38	0.37	0.35
	-0.50	0.48	0.47	0.45	0.44	0.41	0.39	0.37	0.35	0.33	0.32	0.31
	0.50	0.59	0.57	0.56	0.55	0.53	0.52	0.50	0.49	0.48	0.47	0.46
	0.25	0.66	0.65	0.64	0.62	0.60	0.58	0.57	0.55	0.51	0.48	0.45
0.070	0.00	0.67	0.64	0.61	0.59	0.54	0.51	0.47	0.44	0.42	0.39	0.37
	-0.25	0.55	0.52	0.50	0.48	0.45	0.42	0.39	0.37	0.35	0.33	0.32
	-0.50	0.46	0.44	0.43	0.41	0.38	0.36	0.34	0.32	0.30	0.29	0.28
	0.50	0.57	0.56	0.55	0.53	0.51	0.50	0.48	0.47	0.46	0.45	0.44
	0.25	0.65	0.63	0.62	0.60	0.58	0.56	0.55	0.51	0.47	0.44	0.41
0.080	0.00	0.64	0.61	0.58	0.56	0.51	0.47	0.44	0.41	0.38	0.36	0.34
	-0.25	0.52	0.50	0.48	0.46	0.42	0.39	0.37	0.34	0.33	0.31	0.29
	-0.50	0.44	0.42	0.40	0.39	0.36	0.34	0.31	0.30	0.28	0.27	0.26
	0.50	0.56	0.54	0.53	0.52	0.50	0.48	0.46	0.45	0.44	0.43	0.42
	0.25	0.63	0.61	0.60	0.58	0.56	0.54	0.51	0.47	0.44	0.41	0.38
0.090	0.00	0.61	0.58	0.55	0.53	0.48	0.44	0.41	0.38	0.36	0.34	0.32
	-0.25	0.50	0.48	0.45	0.43	0.40	0.37	0.34	0.32	0.30	0.29	0.27
	-0.50	0.42	0.40	0.38	0.37	0.34	0.31	0.29	0.28	0.26	0.25	0.24
	0.50	0.54	0.52	0.51	0.49	0.47	0.45	0.44	0.43	0.41	0.40	0.40
	0.25	0.61	0.59	0.57	0.56	0.53	0.51	0.48	0.44	0.41	0.38	0.35
0.100	0.00	0.59	0.56	0.53	0.50	0.45	0.42	0.38	0.36	0.33	0.31	0.29
	-0.25	0.48	0.45	0.43	0.41	0.38	0.35	0.32	0.30	0.28	0.27	0.25
	-0.50	0.40	0.38	0.37	0.35	0.32	0.30	0.28	0.26	0.24	0.23	0.22

Table 12 (cont'd).

COMPUTER SOLUTION

Theory-The general load deformation response of a curved girder, which may have an arbitrary geometry when subjected to combined vertical (q_y) , lateral (q_x) , longitudinal (q_z) , and moment (m_z) uniform loads applied along the girder, as shown in Fig. 22, is given by the following differential equations, as developed by Vlasov.¹³

$$\left(\frac{EI_w}{R^2} - EI_x\right) \eta^{iv} + \frac{GK_T}{R^2} \eta'' - \frac{EI_w}{R} \phi^{iv} + \frac{EI_x}{R} \phi'' + q_y = 0 \quad (31)$$

Fig. 22. Box girder forces

$$-\frac{EI_w}{R}\eta^{iv} + \frac{EI_x + GK_T}{R}\eta'' - EI_w\phi^{iv} + GK_T\phi'' - \frac{EI_x}{R^2}\phi + m_z = 0 \quad (32)$$

where

- η = vertical deflection along girder (y-axis)
- ϕ = transverse rotation of girder (about z-axis)
- EI_x = primary bending stiffness
- GK_T = torsional stiffness EI_w = warping stiffness
- - \hat{R} = radius to center line of box

Fig. 23. Box girder displacements

$$\begin{bmatrix} \underline{EI}_{w} + EI_{x} \\ R^{2} + EI_{x} \\ R \\ \underline{FR} \\ \underline{FR} \\ \underline{FR} \\ \underline{FR} \\ \underline{FI}_{w} \\ R \\ \underline{FI}_{w} \\ \underline{FI}_{w$$

Figure 24

The displacements of the box are shown in Fig. 23. These equations have been solved simultaneously by writing the differentials in central finite difference form.^{4,7} The mesh spacing between nodes is defined as Δ , resulting in Eqs. (33) and (34), as shown in Fig. 24. The general mesh patterns are appropriately modified to accommodate exterior (simple or fixed) supports in bending or torsion and interior supports.

The deformations η and ϕ at each node are then used to evaluate internal forces, as given by Eqs. (35) through (38), defined by Vlasov:¹³

$$M_x = -EI_x \left(\eta'' - \frac{\phi}{R}\right) \tag{35}$$

$$Bi = -EI_{w} \left(\phi'' + \frac{\eta''}{R} \right) \tag{36}$$

$$M_{ST} = GK_T \left(\phi' + \frac{\eta'}{R} \right) \tag{37}$$

$$M_w = -EI_w \left(\phi''' + \frac{\eta'''}{R}\right) \tag{38}$$

where

 M_x = primary bending moment

Bi = bimoment (warping normal stress function)

 M_{ST} = pure torsional moment

 M_w = warping moment

Equations (35) through (38) have also been written in finite difference notation, thus permitting evaluation of the forces upon determination of deformations.

The primary normal stresses induced into the box are then computed by the classic equations given in the section "Bending and Torsional Stresses."

Distortion of Curved Sections—In the previous section, the load-deformation equations were developed on the premise that the box cross section retains its shape. As described in the discussion of "Distortional Stresses", it is known that the cross section distorts. The load-deformation response of such a box is given by the following differential equation, as developed by Dabrowski:⁹

$$\gamma^{iv} + 4\lambda^4 \gamma = \frac{1}{WA^*} \left(\rho \frac{M_x}{R} + \frac{m_z}{2} \right) \tag{39}$$

where

$$\gamma$$
 = angular distortion of box section
 M_x = internal primary bending moment [Eq.
(35)]
 R = radius to center line of box
 WA^*, ρ, λ = geometric properties of box
 m_z = external torsional loading per length (as

The solution of Eq. (39) can readily be performed by converting the differential into finite difference form, giving Eq. (40):

previously described)

$$(1)(-4)(6+4\lambda^4\Delta^4)(-4)(1) = \frac{\Delta^4}{WA^*} \left(\rho \frac{M_x}{R} + \frac{m_z}{2}\right)$$
(40)

This equation is appropriately modified to consider interior diaphragms or supports by assuming $\gamma = 0$. In evaluating Eq. (40), the internal bending moment M_x is required in addition to the external torsional moment m_z . Thus, the primary analysis is first conducted to determine M_x ; then the distortional analysis is performed. If interior transverse diaphragms are imposed, thus inhibiting distortional behavior, γ at that location is assumed to be zero.

The induced normal stress due to distortion of the cross section is given by:

$$\sigma_f = -\gamma'' A^* \cdot \tilde{W} \tag{41}$$

where

 γ'' = second derivative of angular distortion computed in difference form

 $A^*, \tilde{W} = \text{cross-sectional properties}$

All of the above equations have been incorporated into a computer program which will now be described.

Fig. 25. Nodal point configurations

Computer Program—As has been previously mentioned, the governing differential equation for cross-sectional distortion was solved using the finite difference numerical technique. Also noted was the need for the values of the independent variable M_x prior to solving Eq. (39); therefore, the equations for torsion and bending of curved girders must first be determined. This was done using an existing computer program,⁶ which utilizes the finite difference method to solve the differential equations, as previously described. Once the values for the vertical displacements, η , and the rotations, ϕ , have been obtained, they and their appropriate derivatives are substituted into Eq. (35) to determine the values for the induced bending moments. The values for the bending moments are then transferred to a subroutine that has been written to carry out the distortional analysis. Finally, from this subroutine the values for the distortional stresses are obtained.

A general schematic of a curved beam used in the computer program^{5,6} is shown in Fig. 25.

The computer program stores the banded coefficient array in a rectangular matrix to economize on the storage locations required. The resulting augmented matrix is solved using a decomposition method. If a diaphragm is to be located at an arbitrary node point i, the angular distortion at this point is assumed to be equal to zero. In order to make the equations compatible with this assumption, the ith row and corresponding diagonal of the coefficient array, as well as the ith term of the load array, must be eliminated from the augmented matrix. After the appropriate terms have been eliminated, the augmented matrix is then condensed. The above procedure was performed at each diaphragm location before the equations were solved for the unknown angular distortions between the diaphragms.

Program Input—The general computer input data included:

- a. Number of mesh points
- b. Support conditions, number of interior supports
- c. Material properties
- d. Girder geometry
- e. Radius
- f. Loading (uniform or concentrated)

Program Output—The program will print out the following for each mesh-point along the girder length.

- a. Vertical deflection, in.
- b. Rotation, rad

- c. Bending moment, kip-in.
- d. Shear force, kips
- e. St. Venant torque, kip-in.
- f. Warping moment, kip-in.
- g. Total torque, kip-in.
- h. Bimoment, kip-in.²
- i. Angular distortion, rad
- j. Normal bending stresses, ksi
- k. Normal warping stresses, ksi
- l. Normal distortional stresses, ksi

A new version of the box beam program is being developed and will accommodate continuous spans, automatic dead and live load generation, influence lines, force envelopes (M, V, Bi, T) and selection of plate size according to the specifications given in Table 11.

REFERENCES

- 1. Hall, D. H. et al. Horizontally Curved Steel Box Girder Bridges—A Survey Task Committee on Curved Box Girders, ASCE-AASHTO Committee on Flexural Members, Committee on Metals, Structural Division, ASCE (to be published).
- 2. American Association of State Highway and Transportation Officials Standard Specifications for Highway Bridges 11th Edition, 1973.
- 3. Mattock, A. H. and S. B. Johnston An Experimental and Analytical Study of the Lateral Distribution of Load in Composite Box Girder Bridges Final Report, U.S.S. Corp., Pittsburgh, Pa., 1968.
- 4. Heins, C. P. and J. C. Oleinik Curved Box Beam Bridge Analysis Computers and Structures Journal, Vol. 6, pp. 65-73, Pergamon Press, London, 1976.
- Oleinik, J. C. and C. P. Heins Diaphragms for Curved Box Beam Bridges ASCE Journal of the Structural Division, Vol. 101, No. ST10, Oct. 1975.
- 6. Oleinik, J. C. and C. P. Heins Diaphragm Spacing Requirements for Curved Steel Box Beam Bridges Civil Engineering Report No. 58, University of Maryland, College Park, Md., Aug. 1974.
- 7. Heins, C. P. Bending and Torsional Design of Structural Members Lexington Books, Lexington, Mass., 1975.
- Nakai, H. and C. P. Heins Analysis Criteria for Curved Bridges ASCE Journal of the Structural Division, Vol. 103, No. ST7, July 1977.
- 9. Dabrowski, R. Curved Thin Walled Girders Cement and Concrete Association, London, England 1968.
- Williamson, D. M. BEF Analysis for Cross-Sectional Deformation of Curved Box Girders with Internal Diaphragms M.S. THESIS= Civil Engr. Dept., Carnegie-Mellon University, Pittsburgh, Pa., April 1974.
- 11. Tentative Design Specifications for Horizontally Curved Highway Bridges Final Report, CURT—Project HPR2-(111), March, 1975.
- Mozer, J. D. and C. G. Culver Behavior of Curved Box Girders—Laboratory Observations ASCE Specialty Conference on Metal Bridges, St. Louis, Mo., Nov. 12–13, 1974.
- Vlasov, V. Thin Walled Beam Theory NSF, Washington, D.C., 1961.