
Box Girder Bridge Design—State of the Art 
C. p. HEINS 

The information that will be presented herein will pertain 
to straight and curved steel composite box girder bridges 
of moderate span length (50-250 ft) that are utilized for 
highway interchanges. Although the general theories are 
applicable to larger structures, the design formulas that 
have been developed and will be given herein are only 
suitable for the conventional highway bridge. 

where 

AT,AB 

L 
d 

total area of the top and bottom flange, re­
spectively, in.^ 
span length, ft (90 < L < 200) 
girder depth, in. 

BRIDGE TYPE 

Details—During the past two years, the ASCE Task 
Committee on Horizontally Curved Steel Box Girder 
Bridges has conducted a comprehensive survey^ on the 
details of box girder bridges (straight and curved). This 
survey has shown that the number of box girder bridges 
being built has increased dramatically since 1961, as shown 
in Fig. 1. 

The collected details (geometry) of the 82 reported 
bridges has been reduced to those shown in Tables 1-3, 
with the ratios of these dimensions given in Tables 4-6. The 
various parameters listed in these tables are shown in Fig. 
2. These bridges represent typical steel-composite struc­
tures, and the data given therein can be used for prelimi­
nary design. The bridges generally have internal cross-
bracing and top lateral bracing with external diaphragms 
placed only at the support piers. 

Section Geometry—In the design of any complex struc­
ture in which the section changes and the forces are not 
readily computed, it is useful to have data or empirical 
relationships to select plate and girder sizes. Examination 
of the data presented in Tables 1-3 has resulted in the 
following general equations: 

Single Span: 

AB = 12.9a' 

(1) 

(2) 

C. p. Heins is Professor of Civil Engineering, University of 
Maryland, College park, Md. 

Ed. Note: This paper was originally presented at the AISC Na­
tional Engineering Conference, Los Angeles, Calif, in May 
1978. 
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Fig. 1. Frequency of box girder bridge built vs. year built 

Fig. 2. Box girder dimensions 
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Table 1. Single-Span Box Bridge Dimensions 

L 
(ft) 

90 

109.6 

118.5 

140 

177 

208 

NB 

1 

2 

4 

4 

4 

5 

(ft)„ 

6.6 

12-16 

43 -48 

55.6 

55.6 

78.8 

R 
(ft) 

300 

760 

1773.8 
560.5 

600 

2000 

0 

d 
(in.) 

36.6 

52 

48 

120 

120 

77 

B 
(in.) 

50 

72 

60 

56 

56 

61 

(in.) 

% 
178 

% 

2 

278 
2 

(in.) 

7. 
78 

% 

% 
% 
% 

bf 
(in.) 

12 

18 

18 

24 

24 

24 

(in.) 

78 
1 

1 

1-274 

2-278 
2 

d 
(deg) 

0 

0 

0 

13.6 

13.6 

13.2 

Brace 
Spac'g 

(ft) 

a 

11 
a 

25 

25 

23-26 

^Not known. 

In addition to developing Eqs. (1) and (2), the following 
general trends were noted: 

1. Web thickness varied from V2-in. to %.-in. 
2. The ratio of roadway width in feet, WR, to number 

of boxes, NB, varied as 6.5 < WR/NB < 16.0, with 
an average of 12.0. 

3. Width of box varied between 50 in. and 72 in. 
4. Maximum thickness of bottom flange was 2 in. 
5. Width of top flange varied as Wp = 0.12(L - 100) 

+ 12 with a minimum of 12 in. 
6. Maximum thickness of top flange was 2% in. 
7. Minimum ratio d/L was 1/30, with an average of 

1/23. 

L 

(ft) 

100 
100 

108 
108 

111 
111 

120 
120 

120 
120 

145 
145 

145 
145 

174 
174 

185 
185 

194 
214 

217 
217 

220 
220 

NB 

3 

2 

2 

3 

2 

3 

3 

2 

2 

3 

2 

2 

WR 

(ft) 

44 

30 

42 

44 

42 

43 

43 

38 

55.6 

42 

55.6 

55.6 

Table 2. Two-Span 

R 
(ft) 

oo 

162.5 

2885 

oo 

1637 

oo 

oo 

2272 

oo 

2884 

2000 

2000 

d 
(in.) 

48 

48 

42 

58 

56 

60 

60 

71 

120 

63 

120 

120 

B 
(in.) 

72 

57 

114 

68 

108 

56 

56 

101 

56 

86 

56 

56 

Continuous Box Bridge 

tb 
(in.) 

+ 1 % 

- % 

+ 7.6 
- 7. 
+ % 

- 78 

+ 78 

- Vs 

+ 7l6 

- 78 

+ "A6 

- \ 
+ 78 

- %e 
+ % 

- % 

+ 1 7. 
- 2 7. 

+ 1 % 
- 2 74 

+ 2 % 

- 2 78 

+ 2 78 

[ - 3 78 

^w 
(in.) 

% 

\ 

% 

% 

+ 7,. 
- % 

7,. 

7s 

7» 

+ 74 
- 1 

7s 

+ % 
- 2 

+ 74 
- 2 

Dimensions 

V 
(in.) 

+ 12 
- 1 7 

14 

+ 12 
- 1 8 

+ 14 
- 1 9 

+21 
- 2 4 

14 

14 

18 
18 

+24 
- 6 6 

24 

+24 
- 6 6 

+24 
- 6 6 

ff 
(in.) 

+ % 

-n 
% 

+ i'A 
-2V4 

+ 78 

- 1 % 
+ 1 

- l ' / 4 

+ '7.. 
- l ' / 3 

+ 78 

- "L 
+ 1V4 
- 2 7. 
+ 1 

- I ' / s 

2V4 

+ 174 
- 1 7 s 

+ l'7,e 

-n 

d 

(deg) 

a 

26 

8 

a 

9 

0 

0 

9 

0 

0 

0 

13.6 

Brace 
Spac'g 

(ft) 

a 

15 

15 

a 

16-8 

a 

a 

24 

a 

12 

a 

a 

^y 
(ksi) 

36 

50 

50 

36 

50 

50 

50 

50 

36 

36 

36 

36 

Note: + indicates positive moment region. — indicates negative moment region. 
^Not known. 
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Two Span: 

The total plate areas of a two span bridge, shown in Fig. 
3, are computed as: 

AB^ = ^ (0.00153L2 - 0.223L + 13) (3) 

AB-=IA7AB+ 
FyT 

0.64 ^B+ 

P.-
= 1.6^fi+ 

F + 
^y 

(4) 

(5) 

(6) 

where 

AB^,AB~ ~ total bottom and top flange areas 
AT^, AT~ (in.2) in the positive (+) and negative 

(—) moment regions, as shown in 
Fig. 3 

r r 
100 ' L < 2 2 0 ' A, 

WWW Twyrr-

Fig. 3. Two-span box girder bridge—flange area locations 

Py = 

L = 
K = 

WR = 
NB = 

yield point of material, ksi, at section 
being examined 
span length, ft (100 < L < 220) 
NBFyd/{WR X 600), where Fy is at 
AB^ 
roadway width, ft 
number of boxes 

L 
(ft) 

90 
120 

90 

93 
124 

93 

102 
102 
102 

104 
160 
104 

100 
132 
122 

116 
131 
116 

166 
206 
166 

173 
196 
172 

174 
282 
125 

100 
100 
100 

NQ 

2 

2 

2 

2 

2 

2 

4 

3 

2 

2 

^R 
(ft) 

44 

38 

25 

38 

43 

33 

68.5 

40.5 

55.6 

Var. 

R 
(ft) 

716 

2845 

650 

5730 

1310 

oo 

1000 

760 

2000 

874 

Table 3. Three-Span Continuous Box 

d 
(in.) 

41 

42 

51 

61 

54 

63 

55 

60 

120 

120 

B 
(in.) 

94 

114 

557, 

108 

1067, 

8174 

78 

92 

56 

48 

tb 
(in.) 

\ 

+ % 

- \ 

+ 7s 
- 7s 
+ % 
+ \ 
- 1 

+ \ 
- 1 

+ 7s 
- 74 

+ 1 % 

- 2 74 
+ 1 

+ 1 V4 

- 1 V4 
+ 1 

+ 1 

- 3 78 

+ 3 78 

+ 78 

- %e 

^vy 
(in.) 

7s 

% 

- \ 

Is 

+ % 

- % 

% 

7s 

+ 78 

- % 

+ 74 
- 2 

+ % 

- 7,. 

Bridge Dimensions 

V 
(in.) 

+ 14 

- 2 2 

+ 12 

- 1 6 

a 

+ 16 

- 1 6 

+24 
- 3 0 

14 

+20 
- 3 0 
+20 

+20 
- 2 4 
+20 

+24 
- 6 9 

16 

'f 
(in.) 

+ 74 
- 1 

+ 7s 
- 1 

a 

+ 1 
- 2 

+ IV4 

- 1 7 4 

+ 74 
- I V . 

+ 178 
- 3 

+ 178 

+ 174 

- 2 7 4 
+ 1 

+ 1 

- 1 7 s 

+ 1 
- 2 

d 
(deg) 

0 

9.5 

14 

9.5 

14 

a 

8 

0 

13.6 

0 

Brace 
Spac'g 

(ft) 

18^ 
24 

15 

10.3 

15 

a 

a 

20.6 

a 

a 

10 

n 

1.33 

1.33 

1.0 

1.54 

1.08 

1.13 

1.24 

1.14 

1.62 

1.0 

^y 
(M 
+36 
- 5 0 

50 

36 

50 

36 

a 

50 

+36 
- 5 0 

36 

+36 
- 4 4 

Note: + indicates positive moment region. — indicates negative moment region. 
^Not known. 
^At end. 
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The general data indicates that: 

1. Web thickness, tyj, varied from %-in. to •y4-in. 
2. WR/NB varied as 14 < WR/NB < 28, with an 

average of 20. 
3. Width of box B, in inches, varied approximately as 

B = 2.5[{WR/NB) - 11], with WR in inches, and 
^ > 55 in. 

4. Width of top flange, bj, varied from 12 in. to 24 in., 
in accordance with 6/+ = 0.12(L - 100) + 12. 

5. Top flange thickness tj was less than 2V2 in. in all 
cases. 

6. {d/L)^^n = 1/30, with {d/L)a,g = 1/25. 

Table 4. Single-Span Box Bridge Geometric Ratios 

L 
(ft) 

90 
109.6 

118.5 

140 
177 
208 

d/L 

0.0339 

0.0395 

0.0338 

0.0714 

0.0565 

0.0308 

L/R 

0.300 

0.144 

0.211 

0.233 

0.0885 

0 

L/tt 

2160 

956.4 

2844 

840 
679.2 

1248 

d/B 

0.732 

0.722 

0.800 

2.14 

2.14 

1.26 

B/tb 

100 
52.4 

120 
28 
17.9 

30.5 

VA/ 
13.7 

12.0 

18.0 

10.7 

9.14 

12.0 

Table 5. Two-Span Continuous Box Bridge 
Geometric Ratios 

L 
(ft) 

100 
100 

108 
108 

111 
111 

120 
120 

120 
120 

145 
145 

145 
145 

174 
174 

185 
185 

194 
214 

217 
217 

220 
220 

djL 

0.040 

0.0370 

0.0315 

0.0403 

0.0389 

' 0.0345 

0.0345 

0.0340 

0.0573 

0.0263 

0.0461 

0.0454 

LjR 

0 

0.665 

0.0385 

0 

0.0733 

0 

0 

0.0766 

0 

0.0707 

0.109 

0.110 

LItb 

2400 

4152 

2664 

2304 

3288 

2532 

2784 

4176 

1476 

1596 

1157 

1006 

djB 

0.667 

0.842 

0.368 

0.853 

0.519 

1.07 

1.07 

0.703 

2.14 

0.733 

2.14 

2.14 

B/tb 

+ 144 

-96 

+ 182 

-114 

+228 

-130 

+ 109 

-77.7 

+247 

-173 

+81.5 

-74.7 

+89.6 

-81.5 

+ 202 

-135 

+37.3 

-24.9 

+57.3 

-38.2 

+24.9 

-19.5 

+21.3 

-17.9 

bfltf 

+ 24 

-11.3 

+ 22.4 

-22.4 

+8.0 

-8.0 

+22.4 

-12.7 

+ 21.0 

-19.2 

+ 14.9 

-9.3 

+22.4 

-17.2 

+ 14.4 

-7.2 

+24.0 

-Closed 

+ 10.7 

-10.7 

+ 13.7 

-Closed 

+ 12.4 

-Closed 

Three Span: 

The total plate areas of a three span bridge shown in Fig. 
4 are computed as: 

n 
AT^ = 

6AK 
(Li - 73) 

AB+ = f^iL,-52) 

AT- = 
2.6K 

(Li - 100) 

(7) 

(8) 

(9) 

AB- = -TT (0.964L2 - 1.65(10-VZ^22) - 70) (10) 
An 

AT+ = 0.95 AT- - 0.011(ylr~)2 - ^A/K (11) 

AB-
\0K 

(L2 - 48) (12) 

Table 6. Three-Span Continuous Box Bridge 
Geometric Ratios 

L 

90 
120 
90 

93 
124 
93 

102 
102 
102 

104 
160 
104 

100 
132 
122 

116 
131 
116 

166 
206 
166 

173 
198 
172 
174 
282 
125 

100 
100 
100 

d/L 

0.0285 

0.0283 

0.0417 

0.0318 

0.0341 

0.0401 

0.0223 

0.0253 

0.0355 

0.100 

L/R 

0.168 

0.0436 

0.157 

0.0279 

0.101 

0 

0.206 

0.261 

0.141 

0.114 

Ljtb 

1644 

2976 

2448 

2556 

2114 

4188 

2472 

2376 

1082 

2136 

d/B 

0.436 

0.368 

0.919 

0.565 

0.507 

0.771 

0.705 

0.652 

2.14 

2.5 

BItb 

107.4 

+ 228 

+63.4 

-63.4 

+ 111 

+ 144 

-108 

+ 142 

-107 

+ 218 

-109 

+62.4 

-34.7 

+ 78.0 

+ 73.6 

-73.6 

+92.0 

+56.0 

-17.9 

+ 17.9 

+ 76.8 

-85.3 

bfltf 

+ 18.7 

-14.7 

+ 13.7 

-9.85 

a 

+ 16.0 

-8.0 

+ 19.2 

-17.1 

+ 18.7 

-9.33 

+ 12.3 

-10.0 

+ 12.3 

+ 11.4 

-10.7 

+20.0 

+24.0 

-36.8 

+ 16.0 

-8.0 
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Ax ^ A T / *T 

Ag Ag Ag 

A-

" isr 

Fig. 4. Three-span box girder bridge—flange area locations 

where 

9 0 < L i < 180 (ft) 

1 0 0 < L 2 <290(ft) 
n = L2/L\ 

NBiFy)d 

^ (WRX 600) 
Fy = Specified yield point of material at section being 

examined 

A study of the data indicates that: 

1. Web thickness, t^, varies from ^/g-in. to Vg-iî -
2. WR/NB varies as 12.5 < WR/NB < 22, with an 

average of 18.0. 
3. The width of the box varies as 5 = 7A3[{WR/NB) 

— 5.0], with Bmin - 55 in. and B^ax = 114 in. 
4. The top flanges had geometry of '^U — /̂ — ^ and 

12 < fe/< 30. 
5. {d/L2)rmn = 1 /40 w i t h {d/L2)avg = 1 /30 .5 . 

- c p - -̂ ^ ^c 

1 ' t 

' 1 ' 
1 ' 1 
1 B 1 

1 

I 

t 

Fig. 5. Actual braced section 

Fig. 6. Modeled braced section 

LOAD DISTRIBUTION 

Straight Bridges—the AASHTO specification^ provides 
design criteria for evaluation of the induced bending mo­
ment in straight composite multi-box girder bridges of 
moderate length. This provision, based on research work 
by Mattock^ and the box girder geometry listed in Tables 
7 and 8 and Figs. 5-8, is Sect. 1.7.103: 

"The live load bending moment for each box girder 
shall be determined by applying to the girder the frac­
tion WL of a wheel load (front and rear) according to 
the following:" 

WL = 0.1 + \.7R + 
0.85 

(13) 

where 

R = M, 1.5 >R >0 .5 
number of box girders ' 

N^ = Wc/\2, reduced to nearest whole number 
Wc = roadway width between curbs, ft 

Curved Bridges—If the bridge system is composed of 
curved box girders, then resistance of these elements to the 
applied live load is accomplished by interaction of torsion 
and bending. This interaction creates a highly indetermi­
nate situation and, in general, requires utilization of a 
computer program."^ In order to minimize the need for a 
computer solution, the response of the typical composite 
sections, shown in Figs. 7 and 8 and Tables 9 and 10, have 
been studied when subjected to live loading with the radius 
200 < R < 10,000 ft. The resulting maximum moments 
were then related to those in the straight system as a func­
tion of Wi^, as given by Eq. (13). The resulting 
equation is: 

WL, = (1440^2 + 4 8 ^ + i ) j ^ ^ (14) 

where 

^Lc ~ curved girder load distribution for moment 
Wt = straight girder load distribution 

X = \/R 
R = center line radius of bridge system, ft 
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UJ4 Concrete Slab 

7T, TT Lateral Bracing 
(Equivalent) 

T '__#„ 

i 
f 
T ' 
5 

13-

t 
B' 

' 

. 

Fig. 7. Actual composite section 

ESTIMATED CURVED GIRDER FORCES 

The effect that curvature has on the internal bending mo­
ment of a box section, when subjected to truck live load, can 
be determined readily by using Eqs. (13) and (14). The 
determination of dead load moment for a curved simple 
span box can also be readily determined by applying the 
following. 

Fig. 8. Modeled composite section 

Dead Load 

Bending—The dead load bending moment^'^ is evaluated 
from: 

where 

KD = \ + 

M, = {KD)(wLVS) 

1 

(15) 

10(i?/L)2 

Table 7. Dimensions of Braced Sections 

Bridge 
Type 

2L2G 
3L 3G 
4L4G 

2L2G 
3L 3G 
4L4G 

2L2G 
3L 3G 
4L4G 

Span 

(ft) 

50 

100 

150 

A 

108 
98 
92 

110 
99 
92 

110 
99 
92 

B 

96 
86 
80 

96 
86 
80 

96 
86 
80 

C 

12 
12 
12 

14 
13 
12 

14 
13 
12 

D 

19.44 

19.47 

19.50 

48.125 

48.125 

48.125 

74.75 

74.75 

74.75 

Dimensions (in.) 

n 

0.625 

0.5625 

0.5 

1.0 
1.0 
1.0 

1.5 
1.5 
1.5 

T2 

0.375 

0.375 

0.375 

0.5 
0.4375 

0.4375 

0.625 

0.5625 

0.5625 

TS 

0.5 
0.5 
0.5 

0.75 

0.75 

0.75 

1.0 
1.0 
1.0 

74 

0.0878 

0.0980 

0.105 

0.0878 

0.0980 

0.105 

0.0878 

0.0980 

0.105 

T5 

0.217 

0.224 

0.222 

0.331 

0.348 

0.352 

0.458 

0.479 

0.483 

Table 8. Dimensions of Composite Sections 

Bridge 

Type 

2L 2G 

3L 3G 

4L4G 

2L 2G 
3L 3G 
4L4G 

2L 2G 
3L 3G 
4L4G 

Span 
(ft) 

50 

100 

150 

A' 

192 
172 
160 

192 
172 
160 

192 
172 
160 

B' 

..96 

86 
80 

96 
86 
80 

96 
86 
80 

C 

12 
12 
12 

14 
13 
12 

14 
13 
12 

D' 

19.44 

19.47 

19.50 

48.125 

48.125 

48.125 

74.75 

74.75 

74.75 

E' 

25.75 

25.75 

25.75 

54.625 

54.625 

54.625 

81.5 

81.5 

81.5 

Dimensions (in.) 

F' 

42.0 

37.0 

34.0 

41.0 

36.5 

34.0 

41.0 

36.5 

34.0 

TV 

0.625 

0.5625 

0.5 

1.0 
1.0 
1.0 

1.5 
1.5 
1.5 

T2' 

0.375 

0.375 

0.375 

0.5 
0.4375 

0.4375 

0.625 

0.5625 

0.5625 

r3' 

0.5 
0.5 
0.5 

0.75 

0.75 

0.75 

1.0 
1.0 
1.0 

r4' 

0.0878 

0.0980 

0.105 

0.0878 

0.0980 

0.105 

0.0878 

0.0980 

0.105 

Tb' 

0.947 

0.955 

0.958 

1.019 

1.030 

1.033 

1.092 

1.106 

1.108 
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L = span length, ft 
R = radius to center line of box, ft 
w = dead load per unit of length 

Torsion—The induced torsional dead load force can sim­
ilarly be determined by: 

Tc = (0.75^)(z^L) (16) 

where e = center line offset of the curved box. 

Live Load 

Torsion—The live load bending effect is found by Eqs. (13) 
and (14). The torsional force is estimated as follows: 

Tc = 72NT{0.9Se + X) (17) 

where 72 represents the gross weight of AASHTO truck, 
and 

ÂT̂  = number of trucks on box 
X = eccentricity from center line of box to resultant 

of laterally positioned trucks 
e = center line offset of curved box 

• 

Bending Normal Stres 

Fig. 9, Bending normal stress 

: YQ 

Fig. 10. Bending shearing stress 

Table 9. Section Properties of M o d e l e d Braced Sections 

Bridge 

Type 

2L2G 

3L 3G 

4L4G 

2L2G 

3L 3G 

4L4G 

2L2G 

3L3G 

4L4G 

Span 

(ft) 

50 

100 

150 

Y 

(in.) 

6.94 

7.16 

7.21 

18.6 

18.9 

19.1 

30.3 

30.7 

31.0 

(in/) 

6,550 

6,090 

5,720 

67,400 

61,700 

58,300 

236,000 

216,000 

205,000 

K'T' 

(in.̂ ) 

18,900 

17,000 

15,600 

140,000 

118,000 

107,000 

378,000 

311,000 

280,000 

(in.^) 

3,220,000 

2,200,000 

1,710,000 

9,450,000 

2,940,000 

1,720,000 

3,710,000 

216,000 

528,000 

(in/) 

1,620,000 

1,230,000 

1,020,000 

18,400,000 

13,500,000 

11,100,000 

68,000,000 

49,500,000 

41,300,000 

Table 10. Section Properties of Modeled 
Composite Sections 

Bridge 

Type 

2L 2G 

3L 3G 

4L 4G 

2L 2G 

3L 3G 

4L4G 

2L 2G 

3L 3G 

4L4G 

Span 

(ft) 

50 

100 

150 

Y 

(in.) 

19.8 

19.8 

19.7 

37.8 

37.9 

37.8 

52.1 

52.3 

52.1 

Ix 
(in/) 

27,200 

24,700 

23,100 

178,000 

159,000 

150,000 

511,000 

460,000 

433,000 

(in/) 

56,800 

49,100 

44,600 

250,000 

197,000 

176,000 

551,000 

433,000 

385,000 

(in/) 

3,640,000 

2,170,000 

1,540,000 

15,800,000 

16,400,000 

15,400,000 

98,700,000 

101,000,000 

92,400,000 

(in/) 

8,280,000 

6,140,000 

5,050,000 

67,800,000 

48,400,000 

40,100,000 

228,000,000 

164,000,000 

137,000,000 

Krp= pure torsional constant 

/yy = warping constant 

BENDING AND TORSIONAL STRESSES 

Straight Bridges—A straight box girder, when subjected 
to live loads, will develop bending stresses. The inducement 
of torsional stresses may occur when the loading is eccentric 
to the shear center. However, in general, such effects are 
neglected. Thus the stresses that are considered are: 

and 

where 

M 
S 
V 

Q 
I 
t 

fb = M/S 

T = Vd/It 

induced bending moment in the box 
section modulus 
induced bending shears in the box 
statical moment 
moment of inertia 
plate thickness 

(18) 

(19) 

These typical stresses are shown in Figs. 9 and 10. 

Curved Bridges—As in the case of straight bridges, curved 
bridges will develop bending stresses. However, due to the 
curvature of the bridge, torsional forces will also develop; 
the magnitude of these will depend on the cross-sectional 
geometry, span length, and radius. 

Pure Torsion—Any section, open or closed, when subjected 
to a torsional loading, will resist (in part) the applied torque 
by pure torsion given by: 

TpT = GKT(t>' (20) 
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where 

ATj = torsion constant 
G = shear modulus 
(f)^ = rate of change of rotation per unit length 

Equation (19) is probably more familiar in the following 
form: 

T^GKTJ or 0 = TL/GKT 

as given in texts on strength of materials. 
T h e evaluation of the torsion constant KT is dependent 

on whether the box section is open or completely closed, 
where ' 'closed" would represent a composite or braced 
section. T h e determination of KT is given^ by the fol­
lowing: 

Open box: 

where 

KT = -Y.hf^ (21) 

h = larger plate dimension 
t = smaller plate dimension for same element 

Closed box: 

where 

KT = 4AoVf 
ds 

(22) 

AQ = enclosed area of box section, luR to center line 
of elements 

ds = length of a given element 
t = corresponding thickness of that element 

Fig. 11. Pure shearing stress, TPT 

A comparison of the stiffness KT for typical open/closed 
box sections^ indicates that KT^iosed = 10"̂  >< ^Topen Thus , 
if one can structurally close a box section, tremendous 
torsional stiffness can be achieved. 

The induced shearing stresses are given by 

TpT — 
KT 

(23) 

where t = plate thickness of any element. 

Warping Torsion—When a thin-walled section is subjected 
to torsional loading, the elements do not retain their shape 
and thus warp. This warping will induce normal stresses 
and shearing stress, which can be substantially significant 
in open sections. T h e general warping normal stress is 

and warping shear is given by 

(24) 

Trn = • 
t 

where 

Bi = 
W„ = 

I^ = 
<j> = 

EI^(j)^' = warping moment or bimoment 
normalized warping function 
warping constant 
total angle of rotation, radians 
warping statical moment 

These three induced stresses, for a closed box, are shown 
in Figs. 11-13. 

Limiting Effects—The determination of all stresses in a 
curved box is difficult, due to bending and torsion inter­
action. Thus , it would be desirable to determine if it is 
necessary to evaluate both warping and pure torsional 
stresses in a box girder bridge. 

A recent study^ has indicated that for a central angle d 
between 0 and 0.5 and)// > 10 + 40^, warping can be dis­
regarded; for d between 0.5 and 1.0 and \p > 30, warping 
is negligible, where xp = L[GKT/EI^]^^^. A study of many 
curved bridge systems and their respective ^p parameters, 
as shown in Fig. 14, shows that for single closed box units, 
\t > 30; thus warping can be disregarded, providing the 
section is closed. 

Pure torsional stress can be disregarded when \p < 
0.4. 

Fig. 12. Normal warping, f^ Fig. 13. Warping shear, r^ 
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Normal Warping f„ 

Transverse Bending m̂ . 

Figure 14 Fig. 16. Distortional stresses 

Fig. 15. Shear distortion 

DISTORTIONAL STRESSES 

In the development of the general torsional equations, it is 
assumed that the section retains its shape during defor­
mation and final stress evaluation. However, v^hen a box 
section is subjected to torsional loadings, its cross section 
does not retain its shape,^'^^ ^g shown in Fig. 15. Such a 
response will create additional stress in the section and will 
include a normal stress, a shearing stress, and a corner 

bending moment, as shown in Fig. 16. In order to inhibit 
such a response, internal diaphragms can be used^ and thus 
minimize the stress development. 

The required spacing and size of such bracing will be 
discussed in the next section. 

BRACING 

Top Lateral Bracing—As discussed in the section on 
Bending and Torsional Stresses, the torsional stiffness KT 
can be substantially increased if a box section is completely 
closed. Examination of Figs. 17 and 18 shows a box section 
with top lateral bracing. This bracing can be converted^ into 
an equivalent thickness by the following equation: 

E2Aa 
^ea ^^ ' ^eq G b cos^« sma (25) 

A study of various curved box elements, subjected to 
induced bending and warping normal stresses, has indicated 
that for 1 < b/d < 3 (width of box to depth of box) and a 
stress ratio <10%, t^q < 0.050 in., as shown in Fig. 19. 
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-f- - -t: 

Fig. 17. Top lateral bracing 

Thus, the bracing area required would be: 

^^(in.2) > 0.036 

where b = bottom flange width, in. 
In addition to minimizing the warping stress, the section 

becomes closed and thus yp > \0, which also satisfies the 
warping criteria. 

Fig. 18. Top lateral bracing 

Diaphragm Bracing—As indicated previously, the min­
imization of normal stresses due to distortion can be 
achieved by placement of internal cross-diaphragms, shown 
in Fig. 20. A study by Heins and Olenik^, using the typical 
sections shown in Tables 7 and 8, has resulted in the fol­
lowing general equation: 

fd _ (lOL - 350) S^ 

fb R L2 
(27) 

where 

fd = induced dead load distortional normal stress 
fb = induced dead load bending normal stress 
L = span length, ft 
R = radius, ft 
S = diaphragm spacing, ft 

%' 

\ 

\ ' 
\ \ \ b/d = 2.. 

\ \ \ E 2A, 
\ \ t = - d 
y b / d = l . ^ -q C b 

\ \ ' R = 400 f t . 

b / d = . 5 \ \ ^ 

1 ^ ^ s . ^ •~~- ^ ^~~~^ ~ -, 

^^"^^^~~^-—^-IILT ^ ^ 

' 1 1 1 1 I 

( . 3 5 3 5 ) 

1 1 

Fig. 19. Warping ratio vs. equivalent plate thickness 
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Fig. 20. Internal diaphragms 

Examination of the induced live load ratio effect gives: 

w^here subscripts LL and DL represent live load and dead 
load, respectively. 

Combining Eqs. (27) and (28) and permitting a maxi­
mum stress ratio of 10%, required diaphragm spacing is: 

/ R \ V2 
S<L ( , ^ ^ , ^ , \ < 2 5 f t (29) 

\200L - 7500/ ^ ^ 
The effect of the diaphragm stiffness, Q, on the induced 

distortion stress^^ is shown in Fig. 21. For Q > 100, the 

induced distortional stress does not change, indicating a 
rigid diaphragm. Therefore, setting Q = 100 and solving 
for 

Qb cosa K\S 

2Ed^ 

gives 

where 

S 
d 
b 
a 

El 
E 

Ah = 75 
Sb <^3 

J2 (d + b) 
(30) 

area of one diagonal brace, in. 
diaphragm spacing, in. 
depth of box, in. 
width of box, in. 
angle between diagonal brace and horizontal 
(Fig. 21) 
web thickness, in. 

DESIGN SPECIFICATION 

As of this date, the AASHTO specifications pertain only 
to straight box girders. There is, however, a set of specifi­
cations available to the engineer, which have been devel­
oped during a comprehensive project^ ^ called CURT. 
These specifications relate to both curved I and box girder 
bridges and refer to the current AASHTO specifications 
as needed. 

A summary of these proposed specifications is given in 
Table 11. Examination of this table shows the similarity 
to the present straight box girder design criteria. 

"n— 
100 

E ^ d 

NU -- No. D i a p h r a g m s 

T" 
10 

Diaphragm Stiffness Q 

Fig. 21. Distortional stress vs. diaphragm stiffness 
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Table 11. Summary of Proposed Design Specifications (Ref. 11) 

Item 

Compression 

Flange 

Tension 

Flange 

Web Plate 

(No longitudinal 
stiffeners) 

Curved I Girder Curved Box Girder 

(Note: See Table 12 for values of PBPW-) 

b/t < AAm/VFy 

U + / 6 < 0.55 Fy 

Positive moment region: 

b/t < 4 4 0 0 / V ^ 

Negative moment region: 

b/t < {6H0/Fy)X 

X = \+-(^-0A5) > 1.0 
3\Fy 1 

Bottom flange: 

/ , = (^t'^W 
0 = O.O7A;3„4 f o r n > l 

= 0.125y^3 forn = l 

k — buckling coefficient < 4 

n = number of longitudinal stiffeners 

ki),ks = buckling coefficient for compression and shear, 

respectively, where 4 > ^^ > 2 

For flange (including stiffeners) having an allow^able 

stress same as for tension flange: 

w 3 0 7 0 V I 
- < 7=r-X, 
t VFy 

X i = 1 for rz = 1 

= 0.93 + / l . 6 - - \ (—\ > 1.0 for n > 1 

5.34 + 2.84^/ , /z^; /3 
ks = < 5.34 

2(n + 1) 

w 6 6 5 0 V I 
If - > above, but < ^=r— Xo or 60: 

t v ^ 

F, = \0.326Fy + 0.224F, sm ( . / 2 ) / ^ ^ ^ ^ v ^ ^ ^ - ( V O V ^ X 1 ^ 
L ^ > / V 6 6 5 0 V T A : 2 - 3 0 7 0 V I X i / J 

C = V\- 9.0 (f,/Fy)^ 

w 6 6 5 0 \ / I 
I f - > X2 , but < 60: 

t Fy 

Fb= \4.4k{t/w)^ C X 10^ 

or 

L \w/ J \4.4ksHt/w) X 106 

whichever is smaller 

F ^ = 0 . 5 5 F , [ l - 9 . 2 ( / , / F , ) 2 ] V 2 

/^ < 0.337^^ 

For do/R < 0 . 0 2 : 

Use A A S H T O Spec. Art. 1.7.70(A). 

For do/R> 0.02: 

23,000 

but not less than £)/170 

yp = 1.19 - \0{do/'R) + 2>4{do/R)^ 

w^here do = actual distance betw^een transverse stiffeners, in. 

R = radius of girder curvature, in. 

1 b 1 1 

r " 
1 ^ ^ ' 

7— 1 

"T T i 
^^.J^ ^ J ' 

'̂  1 1 

D 

V 

Jl 

1 

•— 1 - ^ l 

- 1 
r> 

\ 
* 

>-̂  

(cont'd next page) 
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Table 11 (cont'd). Summary of Proposed Design Specifications (Ref. 11) 

Item 

Web Plate 
(Single 
longitudinal 
stiffener) 

Web Plate 
(Transverse 
intermediate 
stiffen^rs) 

Longi­
tudinal 
Stiffeners 

Shear 
Connectors 

Curved I Girder Curved Box Girder 

46,000 \^p/ 

but not less than /)/340 

/^Al /2 /do\ 
^ = , - 2 . 9 ( - ) + 2 . 2 ( - ) 

AASHTO Spec. Art. 1.7.71 applies, except 
/, > doty/\0.92 
J = [(25Z)y^2) _ 20]X > 5 

1.0 + [(4/Z))-0.78]Z-^ 

1775 

when 0.78 < d/D < 1.0 and 0 < Z < 10 

d <\\,000 t/\/% (req'd spacing of stiffeners) 

Z = 0.95dyRt 

Note: If/ > DV/^/1500, no stiffener req'd. 

is = 6 'v^/2250 

r > G^oV^/23,000 

v^here 
Is = moment of inertia of stiffener 
r = radius of gyration of stiffener 

Note: In computing Is and r, a centrally located 
web strip < 18/ shall be considered as part 
of the longitudinal stiffener. 

Pc = force on a connector 

= IP^ + F2 + 2PF sin - j < 0^^ 

0 = 0.85 
Su = ultimate strength of connector [see AASHTO Spec. Art. 1.7.100 (A) (2)] 

P = P/N 

N = no. of conn, between pts. of max. pos. moment and 
adjacent end supports or dead load points of contraflexure, 
or between pts. of max. neg. moment and adjacent 
dead load points of contraflexure 

P = 0.85/^c ^^ or AsFy [whichever is smaller at pts. 
of max. pos. moment. At pts. of neg. moment, see 
AASHTO Spec. Art. 1.7.100 (A)(2)] 

P{\ - cos<9) 

~ 4KNs sin(^/2) 

6 = angle subtended between pt. of max. moment (pos. or neg.) 
and adjacent pt. of contraflexure or support 

A: = 0.166 ( 1^ +0.375 

As = total area of steel section, incl. cover plates 

Detail 

rr 

T '—T 

D t —J 

J- , J 

D 

_J 

1 

J 

1 

r' 
i 1 

^8t| k :=, - l- tg 
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/ 
R 

0.008 

0.010 

0.014 

0.018 

0.022 

0.026 

0.030 

0.040 

0.050 

fw r 
fb \ 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

7 

0.74 
0.84 
0.95 
0.77 
0.65 

0.74 
0.83 
0.93 
0.76 
0.64 

0.72 
0.81 
0.91 
0.74 
0.63 

0.71 
0.80 
0.89 
0.72 
0.61 

0.69 
0.78 
0.87 
0.71 
0.60 

0.68 
0.77 
0.85 
0.69 
0.58 

0.67 
0.76 
0.83 
0.67 
0.57 

0.64 
0.73 
0.78 
0.64 
0.54 

0.62 
0.70 
0.74 
0.60 
0.51 

Table 12 

8 

0.75 
0.84 j 
0.94 
0.77 
0.65 

0.74 
0.83 
0.93 
0.76 
0.64 

0.72 
0.81 
0.90 
0.74 
0.62 

0.70 
0.79 
0.87 
0.71 
0.60 

0.69 
0.78 
0.85 
0.70 
0.59 

0.67 
0.76 
0.83 
0.68 
0.57 

0.66 
0.75 
0.81 
0.66 
0.56 

0.63 
0.72 
0.76 
0.62 
0.52 

0.61 
0.69 
0.71 
0.58 
0.49 

. Curvature Reduc t ion Factor 

9 

0.75 
0.35 
0.93 
0.76 
0.65 

0.74 
0.83 
0.92 
0.75 
0.64 

0.72 
0.81 
0.89 
0.73 
0.62 

0.70 
0.79 
0.86 
0.71 
0.60 

0.68 
0.77 
0.83 
0.68 
0.58 

0.67 
0.76 
0.81 
0.66 
0.56 

0.65 
0.74 
0.79 
0„65 
0.55 

0.62 
0.71 
0.74 
0.60 
0.51 

0.60 
0.68 
0.69 
0.57 
0.48 

10 1 

0.75 
0.85 
0.93 
0.76 
0.65 

0.74 
0.83 
0.91 
0.75 
0.63 

0.72 
0.81 
0.88 
0.72 
0.61 

0.70 
0.79 
0.85 
0.70 
0.59 

0.68 
0.77 
0.82 
0.67 
0.57 

0.66 
0.75 
0.79 
0.65 
0.55 

0.65 
0.73 
0.77 
0.63 
0.54 

0.62 
0.70 
0.71 
0.59 
0.50 

0.59 
0.67 
0.67 
0.55 
0.47 

12 

0.75 
0.85 
0.91 
0.75 
0.64 

0.74 
0.84 
0.89 
0.74 
0.63 

0.71 
0.81 
0.86 
0.71 
0.60 

0.69 
0.78 
0.82 
0.68 
0.58 

0.67 
0.76 
0.79 
0.65 
0.56 

0.65 
0.74 
0.76 
0.63 
0.54 

0.64 
0.72 
0.74 
0.61 
0.52 

0.60 
0.68 
0.68 
0.56 
0.48 

0.47 
0.65 
0.63 
0.52 
0.44 

PBPW for Allowable Stress 

l/b 

14 

0.76 
0.85 
0.90 
0.75 
0.64 

0.74 
0.84 
0.88 
0.73 
0.62 

0.71 
0.80 
0.84 
0.69 
0.59 

0.69 
0.78 
0.80 
0.66 
0.57 

0.66 
0.75 
0.76 
0.64 
0.54 

0.64 
0.73 
0.73 
0.61 
0.52 

0.62 
0.71 
0.70 

1 0.59 
0.50 

0.59 
0.66 
0.64 
0.53 
0.46 

0.56 
0.63 
0.59 
0.49 
0.42 

16 

0.76 
0.86 
0.89 
0.74 
0.64 

0.74 
0.84 
0.86 
0.72 
0.62 

0.71 
0.80 
0.82 
0.68 
0.59 

0.68 
0.77 
0.78 
0.65 
0.56 

0.66 
0.74 
0.74 
0.62 
0.53 

0.63 
0.72 
0.71 
0.59 
0.51 

0.61 
0.69 
0.68 
0.56 
0.48 

0.57 
0.65 
0.61 
0.51 
0.44 

0.54 
0.61 
0.56 
0.46 
0.40 

18 

0.76 
0.86 
0.87 
0.73 
0.63 

0.74 
0.84 
0.85 
0.71 
0.61 

0.71 
0.80 
0.80 
0.67 
0.58 

0.68 
0.77 
0.76 
0.63 
0.55 

0.65 
0.73 
0.72 
0.60 
0.52 

0.63 
0.71 
0.68 
0.57 
0.49 

0.60 
0.68 
0.65 
0.55 
0.47 

0.56 
0.64 
0.58 
0.49 
0.42 

0.53 
0.60 
0.53 
0.44 
0.38 

20 

0.77 
0.87 
0.86 
0.73 
0.63 

0.74 
0.84 
0.83 
0.70 
0.61 

0.71 
0.80 
0.78 
0.66 
0.57 

0.67 
0.76 
0.74 
0.62 
0.54 

0.64 
0.73 
0.69 
0.59 
0.51 

0.62 
0.70 
0.66 
0.56 
0.48 

0.60 
0.67 
0.63 
0.53 
0.46 

0.55 
0.62 
0.56 
0.47 
0.41 

0.52 
0.59 
0.50 
0.42 
0.37 

22 

0.77 
0.87 
0.85 
0.72 
0.63 

0.75 
0.84 
0.82 
0.70 
0.61 

0.70 
0.80 
0.76 
0.65 
0.56 

0.67 
0.76 
0.72 
0.61 
0.53 

0.64 
0.72 
0.67 
0.57 
0.50 

0.61 
0.69 
0.64 
0.54 
0.47 

0.59 
0.66 
0.60 
0.51 
0.45 

0.54 
0.61 
0.53 
0.45 
0.39 

0.51 
0.58 
0.48 
0.40 
0.35 

24 

0.77 
0.87 
0.84 
0.72 
0.63 

0.75 
0.84 
0.81 
0.69 
0.60 

0.70 
0.79 
0.75 
0.64 
0.56 

0.66 
0.75 
0.70 
0.60 
0.52 

0.63 
0.71 
0.65 
0.56 
0.49 

0.60 
0.68 
0.62 
0.53 
0.46 

0.58 
0.66 
0.58 
0.50 
0.43 

0.53 
0.60 
0.51 
0.44 
0.38 

0.50 
0.55 
0.45 
0.39 
0.34 

{cont'd next page) 
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I 
R 

0.060 

0.070 

0.080 

0.090 

0.100 

fw 
fb 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

0.50 
0.25 
0.00 

-0 .25 
-0 .50 

7 

0.60 
0.68 
0.70 
0.57 
0.48 

0.59 
0.66 
0.67 
0.55 
0.46 

0.57 
0.65 
0.64 
0.52 
0.44 

0.56 
0.63 
0.61 
0.50 
0.42 

0.54 
0.61 
0.59 
0.48 
0.40 

8 

0.59 
0.67 
0.68 
0.55 
0.47 

0.57 
0.65 
0.64 
0.52 
0.44 

0.56 
0.63 
0.61 
0.50 
0.42 

0.54 
0.61 
0.58 
0.48 
0.40 

0.52 
0.59 
0.56 
0.45 
0.38 

9 

0.58 
0.66 
0.65 
0.53 
0.45 

0.56 
0.64 
0.61 
0.50 
0.43 

0.55 
0.62 
0.58 
0.48 
0.40 

0.53 
0.60 
0.55 
0.45 
0.38 

0.51 
0.57 
0.53 
0.43 
0.37 

Table 12 (cont'd). 

10 

0.57 
0.64 
0.63 
0.51 
0.44 

0.55 
0.62 
0.59 
0.48 
0.41 

0.53 
0.60 
0.56 
0.46 
0.39 

0.52 
0.58 
0.53 
0.43 
0.37 

0.49 
0.56 
0.50 
0.41 
0.35 

12 

0.55 
0.62 
0.58 
0.48 
0.41 

0.53 
0.60 
0.54 
0.45 
0.38 

0.51 
0.58 
0.51 
0.42 
0.36 

0.50 
0.56 
0.48 
0.40 
0.34 

0.47 
0.53 
0.45 
0.38 
0.32 

l/b 

14 

0.53 
0.60 
0.54 
0.45 
0.39 

0.52 
0.58 
0.51 
0.42 
0.36 

0.50 
0.56 
0.47 
0.39 
0.34 

0.48 
0.54 
0.44 
0.37 
0.31 

0.45 
0.51 
0.42 
0.35 
0.30 

16 

0.52 
0.59 
0.51 
0.43 
0.37 

0.50 
0.57 
0.47 
0.39 
0.34 

0.48 
0.55 
0.44 
0.37 
0.31 

0.46 
0.51 
0.41 
0.34 
0.29 

0.44 
0.48 
0.38 
0.32 
0.28 

18 

0.51 
0.57 
0.48 
0.40 
0.35 

0.49 
0.55 
0.44 
0.37 
0.32 

0.47 
0.51 
0.41 
0.34 
0.30 

0.45 
0.47 
0.38 
0.32 
0.28 

0.43 
0.44 
0.36 
0.30 
0.26 

20 

0.50 
0.56 
0.45 
0.38 
0.33 

0.48 
0.51 
0.42 
0.35 
0.30 

0.46 
0.47 
0.38 
0.33 
0.28 

0.44 
0.44 
0.36 
0.30 
0.26 

0.41 
0.41 
0.33 
0.28 
0.24 

22 

0.49 
0.52 
0.43 
0.37 
0.32 

0.47 
0.48 
0.39 
0.33 
0.29 

0.45 
0.44 
0.36 
0.31 
0.27 

0.43 
0.41 
0.34 
0.29 
0.25 

0.40 
0.38 
0.31 
0.27 
0.23 

24 

0.48 
0.49 
0.41 
0.35 
0.31 

0.46 
0.45 
0.37 
0.32 
0.28 

0.44 
0.41 
0.34 
0.29 
0.26 

0.42 
0.38 
0.32 
0.27 
0.24 

0.40 
0.35 
0.29 
0.25 
0.22 

COMPUTER SOLUTION 

Theory—The general load deformation response of a 
curved girder, which may have an arbitrary geometry when 
subjected to combined vertical {qy), lateral {qx), longitu­
dinal iqz), and moment (m^) uniform loads applied along 
the girder, as shown in Fig. 22, is given by the following 
differential equations, as developed by Vlasov.^^ 

GKT ff EI^u 

+ ^ r + qy = 0 (31) 

EI^ , EI^ + GKT „ ^ . 
- ^ V ' " + ^ V" - EI^4>'" 

FJ 
+ GKrr-^cp + m, = 0 (32) 

where 

rj = vertical deflection along girder (};-axis) 
0 = transverse rotation of girder (about z-axis) 

EIx = primary bending stiffness 
GKT ~ torsional stiffness 
Elyj = warping stiffness 

R = radius to center line of box 

Fig. 22. Box girder forces Fig. 23. Box girder displacements 
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R 

EL, 

•-qyA' (33) 

= m^A4 (34) 

The displacements of the box are shown in Fig. 23. 
These equations have been solved simultaneously by 
writing the differentials in central finite difference form."̂ '-̂  
The mesh spacing between nodes is defined as A, resulting 
in Eqs. (33) and (34), as shown in Fig. 24. The general 
mesh patterns are appropriately modified to accommodate 
exterior (simple or fixed) supports in bending or torsion and 
interior supports. 

The deformations rj and 0 at each node are then used to 
evaluate internal forces, as given by Eqs. (35) through (38), 
defined by Vlasov:^^ 

M. = -EI, (T," - I ) 

Bt = -EL, 

M„, = -EL (*-f) 

(35) 

(36) 

(37) 

(38) 

/here 

Bt 

MsT 

primary bending moment 
bimoment (warping normal stress function) 
pure torsional moment 
warping moment 

Equations (35) through (38) have also been written in finite 
difference notation, thus permitting evaluation of the forces 
upon determination of deformations. 

The primary normal stresses induced into the box are 
then computed by the classic equations given in the section 
"Bending and Torsional Stresses." 

Distortion of Curved Sections—In the previous section, the 
load-deformation equations were developed on the premise 
that the box cross section retains its shape. As described in 
the discussion of ''Distortional Stresses", it is known that 
the cross section distorts. The load-deformation response 

of such a box is given by the following differential equation, 
as developed by Dabrowski:^ 

ylV J^ 4 ^ 4 ^ 

WA'' 
(39) 

where 

WA* 

y = 
M , = 

R 
p, X 

angular distortion of box section 
internal primary bending moment [Eq. 
(35)] 
radius to center line of box 
geometric properties of box 
external torsional loading per length (as 
previously described) 

The solution of Eq. (39) can readily be performed by 
converting the differential into finite difference form, giving 
Eq. (40): 

(l)(-4)(6 + 4XW)(-4)(1) = 7 ^ ( p f " + Y ) 
WA^ 

(40) 

This equation is appropriately modified to consider interior 
diaphragms or supports by assuming 7 = 0. In evaluating 
Eq. (40), the internal bending moment M^ is required in 
addition to the external torsional moment m^. Thus, the 
primary analysis is first conducted to determine M^; then 
the distortional analysis is performed. If interior transverse 
diaphragms are imposed, thus inhibiting distortional be­
havior, 7 at that location is assumed to be zero. 

The induced normal stress due to distortion of the cross 
section is given by: 

oy= - 7 M * . W (41) 

where 

7̂ ^ = second derivative of angular distortion 
computed in difference form 

A*, W = cross-sectional properties 

All of the above equations have been incorporated into 
a computer program which will now be described. 
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Fig. 25. Nodal point configurations 

Computer Program—As has been previously mentioned, 
the governing differential equation for cross-sectional 
distortion w âs solved using the finite difference numerical 
technique. Also noted was the need for the values of the 
independent variable M^ prior to solving Eq. (39); there­
fore, the equations for torsion and bending of curved girders 
must first be determined. This w^as done using an existing 
computer program,^ which utilizes the finite difference 
method to solve the differential equations, as previously 
described. Once the values for the vertical displacements, 
r;, and the rotations, 0, have been obtained, they and their 
appropriate derivatives are substituted into Eq. (35) to 
determine the values for the induced bending moments. The 
values for the bending moments are then transferred to a 
subroutine that has been written to carry out the distor-
tional analysis. Finally, from this subroutine the values for 
the distortional stresses are obtained. 

A general schematic of a curved beam used in the com­
puter program^'^ is shown in Fig. 25. 

The computer program stores the banded coefficient 
array in a rectangular matrix to economize on the storage 
locations required. The resulting augmented matrix is 
solved using a decomposition method. If a diaphragm is to 
be located at an arbitrary node point z, the angular distor­
tion at this point is assumed to be equal to zero. In order to 
make the equations compatible with this assumption, the 
t̂h j.Q^ ^j^j corresponding diagonal of the coefficient array, 

as well as the i^^ term of the load array, must be eliminated 
from the augmented matrix.- After the appropriate terms 
have been eliminated, the augmented matrix is then con­
densed. The above procedure was performed at each dia­
phragm location before the equations were solved for the 
unknown angular distortions between the diaphragms. 

Program Input-
eluded: 

-The general computer input data in-

a. Number of mesh points 
b. Support conditions, number of interior supports 
c. Material properties 
d. Girder geometry 
e. Radius 
f. Loading (uniform or concentrated) 

Program Output—The program will print out the fol­
lowing for each mesh-point along the girder length. 

a. Vertical deflection, in. 
b. Rotation, rad 

1. 

Bending moment, kip-in. 
Shear force, kips 
St. Venant torque, kip-in. 
Warping moment, kip-in. 
Total torque, kip-in. 
Bimoment, kip-in.^ 
Angular distortion, rad 
Normal bending stresses, ksi 
Normal warping stresses, ksi 
Normal distortional stresses, ksi 

A new version of the box beam program is being devel­
oped and will accommodate continuous spans, automatic 
dead and live load generation, influence lines, force enve­
lopes (M, F , Bi, T) and selection of plate size according 
to the specifications given in Table 11. 
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