Floor Vibrations and Cantilevered Construction

THOMAS M. MURRAY AND WILLIAM E. HENDRICK

A previous paper by the senior author presented a design
method to estimate the acceptability of a proposed floor
system from the standpoint of occupant induced floor vi-
brations.! The procedures developed therein are applicable
only to steel beam-concrete slab floor systems where the
beams can be considered simply supported at each end.
However, some of the most severe vibration problems have
occurred in construction involving free cantilevers, to which
the proposed method of Ref. 1 is not applicable. The pur-
pose of this paper is to present modifications to the method
suggested in Ref. 1, so that cantilever floor systems and
systems with overhanging beams can be analyzed for
annoying floor vibrations. The modifications were verified
by tests on seven floor systems reported in Ref. 2. One of
the tested systems is used to demonstrate the suggested
analysis procedure.

DESIGN PROCEDURE

Human sensitivity to vibration has been shown to depend
on three parameters: frequency, amplitude, and damping.
Scales relating these parameters to human reaction have
been developed. The modified Reiher-Meister and the
Wiss-Parmelee scales are probably the most suitable for
occupant induced floor vibration analysis (see Ref. 1 for a
complete discussion). The use of either scale requires an
estimate of the frequency and amplitude for a specified
impact. In addition, an estimate of the critical damping is
required. The following sections describe methods that can
be used to estimate the three parameters for cantilever and
overhanging floor systems. For brevity, both types of sys-
tems will be referred to as “cantilevered” floor systems in
the following discussion.

Damping—The damping in a cantilevered floor system
can be estimated as the sum of the damping of the separate
elements in the system. From the guidelines suggested for
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floor systems supported by simply supported beams: bare
floor, 1%-3% (lower limit for thin slab of lightweight
concrete, upper limit for thick slab of normal weight con-
crete); ceiling, 1%-3% (lower limit for hung ceiling, upper
limit for sheetrock or furring attached to beams); ductwork
and mechanical, 1%-10%, depending on amount; parti-
tions, 109%-20%, if attached to the floor and spaced not more
than every five floor beams. These values were originally
suggested in Ref. 1 and are based on observation only, not
on the results of a systematic study.

Frequency—From test results presented in Ref. 2, the
frequency of a cantilevered system can be estimated using
a single tee-beam, if the transformed moment of inertia is
computed assuming:

(a) Composite action, regardless of the method of con-
struction.

(b) An effective slab width, §, equal to the sum of half
the distance to adjacent beams.

(c) An effective slab depth, d,, based on an equivalent
slab of rectangular cross section, is equal in weight
to the actual slab including concrete in the valleys
of decking and the weight of decking.
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Fig. 1. Analytical models
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Figure 1(a) shows the tee-beam model for computing
the transformed moment of inertia.

The first natural frequency of a cantilevered tee-beam,
Fig. 1(b), is given by:

_ gEl, ]1/2
fo = 1875 [WL3 1)
where

g = 386in./sec?

E = modulus of elasticity, psi

I, = transformed moment of inertia, in.*

W = total weight supported by the tee-beam, lbs

L = length of cantilever, in.

The first natural frequency of a simply supported beam
with one overhanging end, Fig. 1(c), is given by:

_e[eEn
p=k |22 @

where g, E, I;, and W are as defined previously, L =
backspan length, in., and X is a coefficient which depends
on the overhanging length to backspan ratio, H/L. The
coefficient K is determined by setting the determinant of
the coefficient matrix of the boundary condition equations
equal to zero. A closed form solution for K is not possible
and values for specific H/L ratios were obtained numeri-
cally. The value of the coefficient X can be determined from
Fig. 2.

Equations (1) and (2) were derived for free lateral vi-
bration of prismatic, straight, elastic beams considering
bending deformations only.

In practice, overhanging beams are usually supported
by flexural members rather than rigid supports. The
flexibility of these members can significantly affect the
frequency of the floor system. In Ref. 2, it is shown that the
system frequency for such cases can be approximated

by:

1 1 1
IR EANE: )
where
f; = the system frequency, Hz
f» = overhanging beam frequency, Hz
EI, ]1/2
=1.57 | S22 4
where
W, = total supported weight, Ibs
I, = girder moment of inertia, in.*
L, = girder span, in.

In the computation of /,, composite action should not be
assumed unless the slab or deck rests directly on the girder
flange. The effective slab width should be estimated as for
normal composite construction, even if shear connections
are not used.
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Table 1. Dynamic Load Factors for Heel-Drop Impact

f, Hz DLF f, Hz DLF f, Hz DLF

1.00 0.1541 5.50 0.7819 10.00 1.1770
1.10 0.1695 5.60 0.7937 10.10 1.1831
1.20 0.1847 5.70 0.8053 10.20 1.1891
1.30 0.2000 5.80 0.8168 10.30 1.1949
1.40 0.2152 5.90 0.8282 10.40 1.2007
1.50 0.2304 6.00 0.8394 10.50 1.2065
1.60 0.2456 6.10 0.8505 10.60 1.2121
1.70 0.2607 6.20 0.8615 10.70 1.2177
1.80 0.2758 6.30 0.8723 10.80 1.2231
1.90 0.2908 6.40 0.8830 10.90 1.2285
2.00 0.3058 6.50 0.8936 11.00 1.2339
2.10 0.3207 6.60 0.9040 11.10 1.2391
2.20 0.3356 6.70 0.9143 11.20 1.2443
2.30 0.3504 6.80 0.9244 11.30 1.2494
2.40 0.3651 6.90 0.9344 11.40 1.2545
2.50 0.3798 7.00 0.9443 11.50 1.2594
2.60 0.3945 7.10 0.9540 11.60 1.2643
2.70 0.4091 7.20 0.9635 11.70 1.2692
2.80 0.4236 7.30 0.9729 11.80 1.2740
2.90 0.4380 7.40 0.9821 11.90 1.2787
3.00 0.4524 7.50 0.9912 12.00 1.2834
3.10 0.4667 7.60 1.0002 12.10 1.2879
3.20 0.4809 7.70 1.0090 12.20 1.2925
3.30 0.4950 7.80 1.0176 12.30 1.2970
3.40 0.5091 7.90 1.0261 12.40 1.3014
3.50 0.5231 8.00 1.0345 12.50 1.3058
3.60 0.5369 8.10 1.0428 12.60 1.3101
3.70 0.5507 8.20 1.0509 12.70 1.3143
3.80 0.5645 8.30 1.0588 12.80 1.3185
3.90 0.5781 8.40 1.0667 12.90 1.3227
4.00 0.5916 8.50 1.0744 13.00 1.3268
4.10 0.6050 8.60 1.0820 13.10 1.3308
4.20 0.6184 8.70 1.0895 13.20 1.3348
4.30 0.6316 8.80 1.0969 13.30 1.3388
4.40 0.6448 8.90 1.1041 13.40 1.3427
4.50 0.6578 9.00 1.1113 13.50 1.3466
4.60 0.6707 9.10 1.1183 13.60 1.3504
4.70 0.6835 9.20 1.1252 13.70 1.3541
4.80 0.6962 9.30 1.1321 13.80 1.3579
4.90 0.7088 9.40 1.1388 13.90 1.3615
5.00 0.7213 9.50 1.1454 14.00 1.3652
5.10 0.7337 9.60 1.1519 14.10 1.3688
5.20 0.7459 9.70 1.1583 14.20 1.3723
5.30 0.7580 9.80 1.1647 14.30 1.8758
5.40 0.7700 9.90 1.1709 14.40 1.8793

Amplitude—The “heel-drop” impact has been used to
develop acceptability criteria when the modified Reiher-
Meister scale is used. The amplitude of a single tee-beam
subjected to a heel-drop impact can be computed from:

Aot = (DLF>max As (5)
where
Ao = amplitude
(DLF)ax = maximum dynamic load factor
A = static deflection caused by a 600-Ib

force
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Therefore, for a cantilever tee-beam,

600L3
= X — 6
Aot = (DLF)max X =5 i (6)
and for an overhanging tee-beam,
2L+
Ay = (DL x LD )

3E]

Equations for (DLF),,,, are given in Ref. 1 and values of
(DLF),p4y are given in Table 1.

Usually more than one tee-beam is effective in resisting
an impact. The first maximum amplitude of a floor system
can be estimated from:

Ao = Aot/Nejf (8)

where Nz = number of effective tee-beams. For a series

of tee-beams with equal effective flange width and simple

supports, it was shown in Ref. 3 that:

Ny =2.967 — 0.05776(S/d,) + 2.556 X 10~8(L*/1,)
+ 0.00010(L/S)* (9)
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Unless L/ is very large, i.e., greater than 10, N, can be
approximated from:

N + L*
17.3d, 1.35El,
where E =29 X 10° psi and S, d,, L, I, are in inch units.
As a design approximation, it is assumed here that the
number of effective tee-beams for cantilevered construction
is the same as for simple supports and no overhang.

Equation (9) was developed assuming at least five
identical tee-beams exist and the impact location is at the
center of the five beams. Frequently, the framing for can-
tilevered balconies is irregular and Eq. (9) cannot be used.
For such cases, it is suggested that a static finite element
analysis be used to determine 4,. A computer program such
as STRUDL* can be used by dividing the slab into a mesh
and treating the beams as line elements with a moment of
inertia equal to the transformed moment of inertia, and
determining the maximum static deflection caused by a
600-1b concentrated load. In lieu of a finite element anal-
ysis, the designer may conservatively take N5 = 1.

Ny =297 — (10)
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Fig. 3. Modified Reiher-Meister scale

Proposed Design Method

1.

Estimate the damping in the finished floor system; if
greater than 8%-10% there is no need for a vibration
analysis.

Compute the transformed moment of inertia of a single
tee-beam, I;, using the guidelines presented.
Compute the frequency from Egs. (1) or (2) and (3), as
applicable.

. Compute the heel-drop amplitude of a single tee-beam,

Ay, using Eq. (6) or (7) and Table 1.

. If the effective slab widths are equal, estimate the

number of effective tee-beams, N4, using Eq. (10);
otherwise, perform a static finite element analysis or

88
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conservatively use Ny = 1.

Compute the amplitude of the floor system, using 4,
= Aot/ N, eff-

Estimate perceptibility, using the modified Reiher-
Meister scale, Fig. 3.

. If the system plots below the lower half of the distinctly

perceptible range, the system is satisfactory if the
damping is less than 3%-4%. If the system plots in the
upper half of the distinctly perceptible range and the
damping is relatively low, less than 6%-8%, complaints
from occupants may occur. If the system plots above the
distinctly perceptible range, the system will be unac-
ceptable if the damping is less than 10%-12%.



Jof
14} .
- )
o8- 12l
§ Yror .
.06\ . ~ . .
Q? L.
3 or -
~ ~
N
N E - “.
L o4 Wel .
N 3 .
W € |
g} ¢
pt x 4
Ny : W
.02l > -
. 2+
45° 45°
1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 | 1
.02 04 .08 10 2 4 6 8 10 12 14

.06
THEORETICAL Ay, In.

(@) Initial amplitude

THEORETICAL f, Hz.

(b) Frequency

Fig. 4. Comparison of theoretical and experimental results

EXPERIMENTAL VERIFICATION

Tests were conducted in seven buildings at a total of 15
locations to verify the proposed design method.? Nine of the
locations were on church balconies, three were on the upper
level of a shopping mall, two were on the second floor ex-
terior walkway of a motel, and one location was on the
second floor exterior balcony of an office building. At each
location the floor was impacted by an approximately 190-1b
man executing a heel-drop. The resulting floor motion was
recorded, together with timing lines, on light sensitive paper
using an engineering seismograph. From the record, it was
possible to determine the initial amplitude, frequency, and
damping of the floor system.

Comparisons of predicted and measured frequencies and
amplitudes are shown in Figs. 4(a) and 4(b), respectively.
Considering there was no laboratory-type control of the
floor system construction or tolerances, the results are
considered to be excellent. Furthermore, some of the beams
supporting the church balconies were not prismatic, varying
in both section and slope to meet pew location and walk-
way requirements, and engineering judgment was used to
obtain equivalent stiffness for use in the proposed design
formulas.
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EXAMPLE

Figure 5 shows structural details of a test location on the
upper level of the shopping mall.? The floor is 1%-in. clay
tile laid over a 2%-in. concrete slab on a steel deck. The slab
is supported by W8 X 15 beams at 30 in. on center, which
rest on the top flange of a W27 X 94. The beams are as-
sumed to act compositely with the concrete slab and the clay
tile for transformed moment of inertia calculations. Com-
posite action is not assumed for the girder.

Damping: Slab and beam 2%
Soffit 3
5% < 8%

.. Need to investigate floor system.

Beam Transformed Section Properties (see Fig. 5):

d, =35i1n; n=7.6

Ac  30(3.5) .

2= 22220 = 1382 in2

. 76 82 in

W8 X 15 A=443in2; [=48.1in%
d=8.121in.
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Fig. 5. Framing system for example
¥, = 4.43(8.12/2) + 13.82(8.12 + 0.5 + 1.75) Beam Frequency:
b 4.43 +13.82 Floor Weight:
= 8.84in. Clay tile = 20 psf
13.82(3.5)2 Concrete = 150 pcf
I, = T + 13.82(1.53)2 + 48.1
8.12\2 2
+4.43 <8.84 - T) w =] 150 <1—£) +20 | (23.34)(2.5) + 23.34(15)
=195.8in.* = 2976 lbs
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H_ 920 30 [14.14(12)]

—=——=0.65 Ny =297 —
L 1414 A (17.3)(3.5) ' 1.35(29 X 106)(195.8)
From Fig. 2: K =0.72 = 2.58
5 =072 [386(29 X 106)(195.8)]1/2 A, = 0.072/2.58 = 0.028 in.
b= (2976)[14.14(12)3
= 8.84 Hz Perceptibility: .
’ With a frequency of 4.09 Hz and an initial ampli-
Girder Frequency: tude of 0.028 in., the system plots in the upper third
W27 X 94: 1 =3270in.* of the “distinctly perceptible” range on the modified
(23342 /2(150) ‘o0t 15 . Reiher-Meister scale, Fig. 3.
1201419 ( 12 —2—5) +94138.83 Field Measurements:
_ The system was measured before the soffit was com-
= 41,796 Ibs pleted:
f.=157 [38()(29 X 106)(3270)]1/2 Damping = 1.39 %
&7 77 L (41796)(38.83(12) 2 J = 472Hz
= 462 Hz A, = 0.029 in.
System Frequency: REFERENCES
1 1 1
}75 = (4.62)? + (8.84)? = 0.0596 1. Mu(ray, .Thomas M. Degign to Prevent Floor Vibratipns
s : : Engineering Journal, American Institute of Steel Construction,
fs =4.09 Hz Vol. 12, No. 3, Third Quarter, 1975.
2. Hendrick, William E. Floor Vibrations in Cantilevered
Amplitude: Construction A thesis submatted to the graduate faculty in
Neglect influence of girder. partial fulfillment of the requirements for the degree of Master
) of Science, University of Oklahoma, Norman, Okla., 1976.
A = 600[9.2(12)]7(9.2 + 14.14)(12) =0.120 in 3. Saksena, S. K.,and T. M. Murray Investigation of a Floor
) 3(29 X 106)(195.8) ' ’ Vibration Parameter School of Civil Engineering and En-
From Table 1, with f, = 4.09 Hz: ?;Z?T;%{ll Science, University of Oklahoma, Norman, Okla.,
(DLF)pax = 0.604 4. ICES STRUDL-II, The Structural Design Language Civil
e Engineering Systems Laboratory, Massachusetts Institute of
A, = 0.604(0.12) = 0.072 in. Technology, Cambridge, Mass., June 71972.
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