
Bending Under Seated Connections 
A. LEON ABOLITZ AND MARVIN E. WARNER 

T H E SEAT, OR BRACKET, is a common type of connec

tion in structural steel. A bracket carried by a column 
or beam web or, in general, by a vertical plate, throws 
a bending moment into the supporting plate, and if the 
plate is relatively thin it may be overstressed. No data 
about this important effect are given in the AISC Man
ual of Steel Construction or in readily available ref
erence works; yet this stress may be critical and govern 
the design of the connection. 

Figure 1 

A. Leon Abolitz is Structural Engineer, and Marvin E. Warner is 
Project Structural Engineer, Urbahn-Roberts-Seelye-Moran, New York, 
N. Y. Mr. Warner is a Professional Member of AISC. 

The problem of evaluating these stresses arose in the 
analysis of numerous heavily loaded brackets used in 
the Vertical Assembly Building at Cape Kennedy, de
signed by Urbahn-Roberts-Seelye-Moran (URSAM). 
A theoretical investigation of plate bending under 
brackets has been carried out by both an elastic method 
and a plastic method. This paper presents the results 
of these analyses, including a rule of thumb as well as 
more accurate methods of computation.* 

Figure 2 

* Computation sheets containing mathematical derivations of formulas 
in this paper have been prepared by Mr. Abolitz and are available 
from AISC. 
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ELASTIC THEORY APPROACH 

A typical plate-supported bracket is shown in Fig. 1. 
In the elastic theory, the deflections of a plate under 
a specified loading are given by Lagrange's equation.* 

The distribution of compression and tension be
tween bracket and plate is not known. An assumption 
is often made that the pressure distribution is linear, 
from a maximum positive value at the bottom of the 
bracket to a maximum negative value at the top. This 
results in plate deflection wi9 shown in Fig. 2, which is 
decidedly non-linear. Yet, as can be intuitively grasped 
from Fig. 1, the deflection must be linear or nearly so. 
Therefore, the usual assumption of a linear pressure 
distribution is erroneous. 

Taking as an example a 12-in. deep bracket on a 
12-in. wide column web, a loading resulting in an ap
proximately linear deflection is represented by pres
sures of + 2 . 3 kips in the middle of the last inch, — 1.1 
kips in the middle of the preceding inch, and equal and 
opposite forces near the top of the bracket, with the 
central part of the bracket not transmitting any load to 
the plate (see Fig. 2). The bracket moment corresponding 
to this loading is 15.4 in.-kips. With a linear pressure 
distribution, as is frequently assumed, the maximum 
compression and tension produced by this moment would 
be 0.64 kips per inch, a much lower value than 2.3 kips 
per inch, given above. In passing, it is pointed out that 
the high localized values of the pressure should be con
sidered in the design of the welds, particularly where 
they are in tension or subject to fatigue effects. 

Reverting to the example, the maximum bending 
moments in the plate, as computed by elastic theory, are 
0.38 in.-kips per inch at a point ^ m - below the bottom 
of the bracket, and 0.26 in.-kips per inch at a point 
l}/2 in- below the bottom. The high value of 0.38 in.-kips 
per inch represents a localized condition, and may safely 
be neglected. Further calculations are therefore based 
on a plate moment of 0.26 in.-kips per inch. 

Denote by t the plate thickness, and by S its section 
modulus per unit width. (According to elastic theory 
S — Y§ t2.) Denote by / the allowable bending stress, 
conservatively taken as 22 ksi for A36 steel,** and by m 
the allowable moment in the plate, in.-kips per inch of 
width. Then 

m=fs=y&fti (i) 

Further, denote by X the allowable bracket moment 
(in.-kips) to which the plate may be subjected, by L 
the depth of the bracket, and by a the horizontal width 

* See Timoshenko and Woinowsky-Krieger Plates and Shells or any 
advanced text on structural mechanics. 

** Allowable working stress for a rectangular section could be assumed to 
be 27 ksi for A36 steel. Considering the shape factor of a rectangular 
plate, the unit stress of 0.75 Fy could be justified. 

of the plate, which is assumed to be of indefinite length 
vertically, and simply supported along its edges in this 
example (see Fig. 1). 

Let X = kmL (2) 

In this expression the coefficient k varies somewhat with 
the ratio L/a but is independent of/. 

In the example shown above, X — 15.4 in.-kips, 
m = 0.26 kips, and L = 12 in. Therefore k = 4.9 and, 
for A36 steel, X = 4.9 mL = 18 Lt2. 

For brackets provided with a flange similar to Fig. 7, 
which mitigates the bending stresses in the plate, the 
following rule of thumb is suggested for figuring the 
allowable bracket moment X on a plate of A36 steel t 
in. thick, the bracket being L in. long: 

X = 24Lt2 (in.-kips) = 2 Lt2 (ft-kips) (3) 

(Brackets for the Vertical Assembly Building were 
figured for moments expressed by the formula: X = 
20 Lt2. More detailed analysis and study gives the evi
dence that the coefficient of 24 as given in Equation (3) 
seems to be more reasonable.) 

PLASTIC DESIGN APPROACH 

While "Rule of T h u m b " Equation (3) is suitable for 
routine cases, it may be too conservative for brackets 
with wide flanges, for plates fixed at their edges, and for 
other conditions. A rigorous application of the elastic 
method involves a lengthy computation of the coeffi
cient k in Equation (2) for each bracket shape, plate 
edge condition, etc. While these computations can be 
programmed on a digital computer, the required ex
penditure of time and money would in general not be 
justified for an individual designer. 

These drawbacks of the elastic theory can fortunately 
be circumvented by means of the yield line method.* 
This method, developed by K. W. Johansen in the 
Scandinavian countries and used mostly in the design 
of reinforced concrete slabs, is a useful tool in steel de
sign as well, the yield lines being thought of as con
tinuous plastic hinges. 

Several bracket diagrams, yield line configurations, 
and expressions and values for the coefficient k in Equa
tion (2), (or rather, Equation (2a) below), are given in 
Figs. 3 through 7 and are summarized in Table I. 

It must be understood that these coefficients should 
generally be multiplied by a reduction factor for use in 
design. The principal reasons for the reduction are: 
(1) A modification of the yield line layout, including the 
effects of the so-called corner levers, may be more critical 
than the assumed configuration, and should therefore 
govern. (2) Yielding and overstress will generally occur 
in some portion of the yield line pattern before it takes 

* See, for example, L. L. Jones Ultimate Load Analysis of Reinforced 
and Prestressed Concrete Structures Chatto and Windus, London, 
1962. 

J A N U A R Y / 1 9 6 5 



place in the remaining portions. This effect is partic
ularly important in brackets subject to fatigue. 

Introducing into Equation (2) a reduction factor <£, 
which should be selected by engineering judgment from 
about 60 to about 90 percent, depending on the cir
cumstances, Equation (2) may be written as 

X = k<t>mL (2a) 

EXAMPLE 

A bracket consisting of a ST12I45 has been sym
metrically welded to the web of a 14W7 150 column, and 
has to carry a 25 kip reaction from a beam parallel to 
the web and located 9 in. away. The material is A36 
steel. Check the column web for bending. 

Given: a = width of plate = T-distance of 14W7 

column = 11.375 in. L = length of vertical weld = 
11 in. c = width of horizontal weld = 7 in. t = web 
thickness of column = 0.695 in. Bracket moment X = 
25 X 9 = 225 in.-kips. To be on the conservative side 
the column web will be assumed simply supported by the 

column flanges, / will be taken as 22 ksi (not 27 ksi per 
AISC Specification I tem 1.5.1.4.8.), S will be taken as 
%t2 (not %t2 of plastic theory), and <j> will be taken as 
75 percent. 

Solution: Using the "Rule of T h u m b " , Equation (3), 
X = 24 Lt2 = 127 in.-kips <225 . N G 

Using Table I, k0 = 10.6 (k from the formula in 
Fig. 7 is 10.9). 

m = l/^fp = Ml kips (1) 

X = k<t>mL = 10.6 X 75 percent X 1.77 X 11 

= 155 < 225 N G (2a) 

Suggested remedy: Weld a 7 X Y2 in. plate to form a 
bottom flange to the bracket, c — 7 in. 

Then, from Fig. 6, 

k = 2a/L + 2L/(a-c)+ 2 V(7a + c)/(a-c) 

= 16.0 

X = 16.0 X 75 percent X 1.77 X 11 

= 234 > 225 O K (2a) 
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APPLICATION OF THE EQUATIONS 

Treating the example of Fig. 1 by yield line methods, 
and referring to Fig. 4, X = 9.3 <f> mL. Previously, by 
elastic methods, the value X = 4.9 mL has been ob
tained. To make the two results coincide, in this example 
<j> must be taken as 4.9/9.3, or 53 percent. This value 
of <j> appears to be too low; in other words, the results 
of the elastic method are too conservative, perhaps by 20 
or 30 percent in this example. 

The yield line patterns and the resulting coefficients 
may be seriously affected by the presence of other con
nections, stiffeners, holes, or similar features near the 
bracket, or by asymmetry. 

TABLE I. 
k0 ( = k, with L = a 

Shape of bracket 
Yield line pattern 
£0-free edges 
£0-fixed edges 

Table of Coefficients 
and c = 0.5 a) for Equation (2d) 

Web 
only 

Fig. 4 
9.3 

12.9 

Top 
flange 
Fig. 7 
10.6 
15.3 

Top and 
bottom 
flanges 
Fig. 6 
13.8 
20.6 

The equations given above hold equally well in cases 
where bending is applied to plates by connections other 
than brackets; for example, by a fixed-ended connec
tion of a beam which develops negative moment. On 
the other hand, cases where the bending is applied partly 
to a plate and partly to another structural element fall 
outside the scope of the present discussion. Important 
examples are: 

(1) Brackets fixed to a column flange rather than to a 
column web. 

(2) T-brackets connected to a column web, with the 
bracket flange welded to the column flanges, or to the 
column web close to the toe of the fillet. Fixing some 
part of the bracket to a stiffer structural element will 
relieve the bending of the plate. At the same time it will 
put heavy stress into the weld connecting the bracket to 
the stiff element. 

It should be noted that the methods of computation 
presented in this paper are based on theoretical analysis 
and conservative assumptions. The authors believe that 
research on this subject and the significance of high 
localized stresses would be desirable, and would prob
ably justify less conservative criteria. 
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