
Design of Columns Subject to Biaxial Bending 
JOHN SPRINGFIELD 

TASK GROUP 3 of the Column Research Council is 

charged with seeking improved methods for the design of 
columns subject to biaxial bending. As a result of recent 
research, this Task Group now can recommend im
proved design techniques for the most commonly used 
type of steel column, namely the wide flange shape. It is 
the purpose of this paper to review the existing AISC 
Specification design requirements for biaxially loaded 
beam-columns, to present the proposed new design 
procedures, and to compare the size of column section 
required by the existing and proposed design rules for 
several practical design problems. 

PRESENT STATUS 

In the current AISC Specification, the expressions 
governing the design of beam columns subject to biaxial 
bending are as follows: 

For strength (maximum bending stresses unaffected by 
axial load acting on deflected shape): 

fa + A i + ^ < 1.0 
0.6Fy F^x Fby 

(1) 

For stability (maximum bending stresses increased by 
axial load acting on deflected shape): 

k 
Fa + 

^mxjbi 

1 A 
F'ei 

+ 
^ my J hi 

F\ 1 - A 
F', 

< 1-0 (2) 

F' by 

I t will be seen that these expressions essentially place 
stress limits on the extreme corner fibers of a column 
section. At a brace point, this limit originally was 0.6Fy, 
giving a factor of safety against nominal first yield of 
1.67. Through successive editions of the AISC Speci
fication, minor modifications have been incorporated. 
The permissible bending stress has been increased from 
0.6Fy to 0.66Fy in recognition of the shape factor of 
wide flange sections about their major axis. I t will be 
noted that the same relationship has been assumed be-
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tween the elastic and plastic moment capacities about 
the j;-axis as about the A:-axis. Of course, this is only a 
conservative simplifying assumption, because the shape 
factors for wide flange shapes are approximately 1.12 
andl .50 about the major and minor axes, respectively. 
If the column were par t of a rigid framework, the 
permissible bending stresses would be increased to 
0.75F,. 

Equation (6.19) of the Second Edition (1966) of the 
Column Research Council's Guide to Design Criteria for 
Metal Compression Members gives the following expression 
for the ultimate strength of beam-columns subject to 
biaxial bending, for a stability type failure: 

+ 
CmxMx 

M,J 1 
p + 

^my-^y 

Muy[\ 

< 1-0 (3) 

where 

^wa: j ^my 

•^uxy -^uy 

Mx, 
P 
P 

My 

P 
•L ey 

Pu 

= equivalent moment factors used in the 
AISC Specification interaction formula 

= ultimate bending moments in the absence 
of axial load 

= applied end moments 
= axial load 
= Euler buckling loads 
= ultimate load of axially loaded column 

The conservatism mentioned previously with respect to 
the different plastic moment capacities about the major 
and minor axes is eliminated in this expression, since the 
correct ultimate moment capacity about each respective 
axis is used. 

Both the AISC design expressions and CRC Eq. 
(6.19) are straight line interaction equations. Research 
has shown that the interaction of moments about the 
orthogonal axes is not linear; on the contrary, the inter
action curve resembles more closely the quadrant of a 
circle (see Fig. 1). I t is important to note that if a member 
is fully loaded under axial load and bending about one 
axis, then there is no spare capacity to accept moment 
about the other axis. However, as the loading decreases 
slightly below the maximum, capacity rapidly develops 
to accept bending about the other axis. 
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Exact 

ProDosed Ea. (13) 
(??= 1.70, b̂  = d) 

My/Mucy 

0.4 0.6 

Mx /Mucx 

Fig. 7. Comparison of interaction curves for long columns 

NATURE o r THE PROBLEM 

Designers may well ask why, if a computer may be used 
to check the adequacy of a section, is it not possible to use 
complex but precise design methods? Considering the 
design of a section for strength only, it is relatively simple 
to check a wide flange section for axial load and moment 
about one axis only by assuming that the neutral axis lies 
either in the flange or in the web and parallel to one or 
the other, then solving for its precise location directly. 
However, when the section is subject to biaxial bending, 
neither the location nor the angular disposition of the 
neutral axis is known. In consequence, a simple direct 
design procedure cannot be followed. 

The solution for stability is far more complex. In 
addition to the problem of locating the neutral axis, the 
eff'ects of torsional buckling and the deflection of the 
column, due to both end moments and the eff'ect of the 
axial load acting on the deflected column, must be 
determined to satisfy equilibrium and compatibility. 
Superimposed on this is the eff̂ ect of residual stresses, so 
that once the actual stress induced by the loading plus 
the residual stress exceeds yield, the determination of 
the deflected shape must take account of the partially 
plastified section. Clearly, this is a difficult problem, 
demanding far too much computer time to be solved 
for each column to be designed. Such a procedure may 
be used only to define master interaction surfaces to 
which simpler empirical surfaces may be fitted in the 
derivation of design expressions. 

RECENT DEVELOPMENTS 

Several design methods have been proposed by members 
of C R C Task Group 3 which reflect the true capacity of a 
beam-column subject to biaxial bending. Ringo, Mc-
Donough, and Basehart^ have studied the beam-column 
at a brace point. They were able to classify the 77 com
monly occurring wide flange column sections into seven 
groups and to provide convenient design aids for these 
sections in the form of seven direct reading nomographs. 

Sharma and Gaylord^ developed a series of five 
design charts for biaxially loaded beam-columns, 
plotting dimensionless parameters against slenderness 
ratio. In this way they were able to off'er design of the 
complete column, both for strength at the brace point 
and for stability. Design using the Sharma and Gaylord 
charts is quite rapid; the only disadvantage is that 
interpolation is required on each chart followed by 
interpolation between the charts. 

In England, Young^ has recently published a design 
method, complete with formulas and design aids, in 
which the section is selected such that its major axis 
plastic moment, reduced by coefficients reflecting the 
presence of axial load, buckling about major and minor 
axes, and torsional buckling, fulfills the design require
ments. 

Many designers dislike graphical procedures, 
although the accuracy obtained thereby probably is 
within the limits with which we can predict the capacity 
of a beam-column under biaxial loading. For this and 
other reasons, specifications are generally expressed in 
terms of algebraic formulas, where possible. Such 
formulas are particularly suitable for incorporation into 
computer design programs. 

By algebraic transposition, Eq. (3) may be written 
in the following form: 

Muc. + < 1.0 (4) 

where M^cx and Mucy are the ultimate symmetrical 
single curvature moment capacities of an axially loaded 
beam-column, about the x- or j;-axis, respectively, when 
there is zero moment about the other axis. These de
nominator terms may be expressed as follows:^ 

At braced points: 

^ . c . = M,,, = 1ASM,,[1 - {P/Py)] (5) 

M,,y = M,,y = lA9M,y[l " (P/P,)^] (6) 

Considering stability: 

^ . 0 . = M,,[l - {P/Pu)][l - {P/Pex)] (7) 

M,,y = M,y[\ - ( P / P J ] [ 1 - {P/Pey)] (8) 
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In the above equations, 

•^pcxi -^pcy 

M^x. M^ 

Mu 

= plastic moment capacity about the x- or 
jV-axis, respectively, reduced for the 
presence of axial load 

= plastic moment capacities 
= plastic moment capacity about the x-

axis, reduced for the presence of lateral 
torsional buckling, if necessary^ 

= M, 1.07 
{LlTyWK 

<M, 

Py 

3160 

= axial load at full yield condition 

RECOMMENDED METHOD 

(9)^ 

The following interaction equation was suggested by 
Chen and Atsuta^'^ and Tebedge and Ghen."^ 

Aj \ exponent 

M^ + 
a r \ exponent 

Mu 
< 1.0 (10) 

By deriving the correct exponents, an interaction curve 
could be defined which would fit the actual strength 
curve of a biaxially loaded beam-column of a particular 
cross section, such as a wide flange shape. 

At a braced section, the capacity was determined by a 
superposition technique and interaction curves plotted. 
For stability, Tebedge and Chen determined empirical 
interaction curves for wide flange columns at various 
levels of axial stress. Exponent expressions giving a good 
flt to these curves were developed. 

Based on the suggestions of Refs. 5, 6, 7, and 8, the 
complete recommendations of Task Group 3 are as 
follows: 

At a braced location, the following equation should 
be satisfied : 

+ 
M . \ ^ 

M, 
< 1.0 (11) 

For wide flange shapes having a flange width to web 
depth ratio from 0.5 to 1.0: 

r = 1.6 
P/Pv 

2 In (P/P,) 
(12) 

where In indicates the natural logarithm. 
To check stability between braced points, the follow

ing equation should be satisfied: 

M^ Mu 
< 1.0 (13) 

"^Slenderness ratios greater than -\/2'K'^E/Fy do not appear to have 
been considered in the development of Eq. (9). Beyond this ratio, 
values of M^x could be based on 1.67 times the allowable stress 
given in Sect. 1.5.1.4.6a of the AISC Specification. The effect of 
lateral torsional buckling generally is to reduce the axial load 
capacity only slightly. 

in which, 

equivalent moment factors used in the 
AISC Specification interaction formula. 

Ml 
I.e., Cm = 0.6 - 0.4 — > 0.4 (14) 

M2 

where M1/M2 is the ratio of the smaller 
to larger moments at the ends of that 
portion of the member unbraced in the 
plane of bending under consideration. 
M1/M2 is positive when the member is 
bent in reverse curvature and negative 
when it is bent in single curvature. 

M^c, ^y = the greater of the moments applied at one 
or the other end of the beam-column 

77 = O.A + P/Py + b,/d> 1.0 (15) 
when bf/d > 0.3 

= 1.0 when bf/d < 0.3 

bf = flange width of W or I section 

d = depth of W or I section 

and in which M^cx and M^cy can be determined from 
Eqs. (7) and (8), respectively. 

The AISC Specification recommends a value of 0.85 
for Cm for compression members in frames subject to 
joint translation (sidesway). This approach should not 
be used in combination with the method recommended 
here, the development of which is based on constant end 
eccentricities up to maximum load. To use the recom
mended method in sway frames, the end moments 
should be determined by a second order analysis, i.e., 
the P-A eff^ects at ultimate load should be included.^'^^-^^ 

The advantages of the design interaction equation 
suggested by Chen et al are that both strength and sta
bility are covered by the same basic equation and the 
equation has universal applicability, for if the exponent 
for the particular section being designed has not been 
determined, it may conservatively be assumed to be 
unity. 

The assumptions made in the proposed design pro
cedure are: 

1. The design is for an isolated member, not for a 
part of a framework in which the forces redistribute as 
ultimate load is approached. 

2. The design method is valid for beam-columns in 
which the axial load and end moments are known, being 
determined by a first or second order elastic analysis, as 
appropriate to braced or unbraced frames. The adoption 
of biaxial plastic design is not suggested. 

3. The sections are compact, i.e., premature failure 
will not occur due to local buckling of flanges or webs 
prior to the member attaining its ultimate strength. 
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4. The column is initially twisted and out-of-straight, 
contains residual stresses, and the material is elastic/ 
perfectly plastic. 

In using the proposed interaction equation, the de
termination of axial load capacity of the column should 
be as realistic as possible. Heretofore, in working strength 
design, the tangent modulus curve has been modified by 
a variable factor of safety as slenderness increases. 

It is suggested that column capacity be based on an 
approach such as ultimate strength,^-^ rather than the 
unmodified tangent modulus critical load given by CRG 
Eq. (2.9). Part 2 of the AISC Specification recommends 
1.7 times the working stress allowable compression, not 
the CRG basic column stress. This procedure was used 
in the examples and comparisons in this text. 

COMPARATIVE DESIGNS 

The following design examples have been deliberately 
chosen to demonstrate the diff'erence in column section 
required for strength (Example 1) and for stability 
(Example 2). The examples have been solved on the 
basis of the following design methods: 

(a) AISC Specification (working stress design): 
See Eqs. (1) and (2) for strength and stability 
formulas, respectively. 

(b) GSA S16.1-1974 (limit states design):* 
(Based on ultimate load equations, using an over
all factor of 1.667.) 

For strength: 

— \ ^ 
Pu Mp^ 

0.6My 
< 1.0 

+ < 1.0 

For stability: Use GRG Eq. (6.19). [See Eq. (3).] 

(c) Interaction equations recommended by Ghen 
e t al:5.6-7,8 

For strength, see Eq. (11). 

For stability, see Eq. (13). 

(Similar equations appear in an Appendix to 
GSA SI 6.1, with restrictions on flange width to 
beam depth ratio.) 

(d) Nomographs developed by Ringo et al.^ 

(e) Gharts developed by Sharma and Gaylord.^ 

(f) Young's procedure.^ 

^Canadian Standards Association. 

Example 1—Design a W12 section in A36 steel, effective 
length 15 ft-0 in., to resist an ultimate axial load of 375 
kips, subject to equal and opposite end moments of 160 
and 60 kip-ft about the x- and j^-axes, respectively, 
inducing antisymmetric double curvature about both 
axes. 

For this case, since reverse curvature is induced by 
the end moments, maximum bending stresses will occur 
at the ends and will be unaff'ected by the axial load 
acting upon the deflected shape of the column. The 
strength-type analysis is found to control in this example. 

The column section required for strength according 
to each design method is shown in Table 1, along with a 
factor indicating the relative economy of each section. 

Table 1. Comparison of Solutions to Design Examples 1 
and 2 Using Various Design Methods 

Method 

a. AISC 

b. GSA 
S16 

c. Chen 

d. Gay-
lord 

e. Ringo 

f. Young 

Example 1 
(Strength Design) 

Column 
Section 

W12X106 

W12X 85 

W12X72 

W12X72 

W12X72 

W12X72 

Economy 
Factor 

1.00 

0.80 

0.68 

0.68 

0.68 

0.68 

Example 2 
(Stability Design) 

Column 
Section 

W12X133 

W12X120 

W12X99 

W12X92 

* 

W12X92 

Economy 
Factor 

1.00 

0.90 

0.74 

0.69 

* 

0.69 

* Not applicable (braced points only). 

Example 2—Same as Example 1, except that the end 
moments induce single curvature about both axes. 

For this case, since single curvature is induced by the 
end moments, maximum bending stresses will occur be
tween the ends of the column, as a result of the axial load 
acting upon the deflected shape. Therefore, a stability 
type analysis must be made. 

The column section required for stability according 
to each design method is shown in Table 1, along with a 
factor indicating the relative economy of each section. 

To illustrate the use of the Chen method, following 
are the required calculations for solving Example 2: 

Chen Solution: 
Try W12 X 99: 

A = 29.09 in.2 Z, = 152 in.^ r, = 5A3 in. 
E = 29000 ksi Zy = 69.5 in.^ ry - 3.09 in. 
Euler buckling stress = TT̂  E/(L/ry 
L/r^ = 33 Fe, = 260 ksi Per = 7563 kips 
L/ry = 58.2 Fey = S4.3 ksi Pey = 2452 kips 

From the AISC column curve. Fa = 17.60 ksi. 

Using a load factor of 1.667, P^ = 853 kips. 
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M^ = M^A 1.07 
{L/TyWFy 

3160 
< M„ 

= (152 X 36) 1.07 [" 
58.2 X 6" 

3160 

= 5,250 kip-in. = 438 kip-ft 

= 438 (1 - 375/853)(l - 375/7563) 
= 233 kip-ft 

M , , , = M^y (1 - P / P J ( 1 - P/Pey) 
= 69.5 X 36 (1 - 375/853)(l - 375/2452) 
= 1,189 kip-in. = 99 kip-ft 

Mux 

^my-^*^ y 

1.0 X 160 
233 

1.0 X 60 

Muy 99 

= 0.687 

0.606 

P/Py = 375/(29.09 X 36) = 0.358 

Since b^ = d, find 77 = 1.76 from Fig. 2 ; alternatively, 
from Eq. (15), ^ = 0.4 + P/Py + b^/d = 1.758'. 

From Fig. 3, enter with appropriate moment ratios, 
finding tha t the required value of 17 is 1.6 < 1.76; 
therefore, the W12X99 section is adequate. This may be 
verified by solution of the interaction equation: 

0.6871-76 _^ 0.6061-76 = 0.93 < 1.0 o.k. 

Compar isons of Results—In Table 1, the most striking 
features of the comparative designs are the remarkable 
reduction in column section required by methods (c) 
through (f), a n d the agreement of their results. 

In Tab le 2, comparison is made with an example 
published by Young. ^ The ultimate major axis moment 
capacity predic ted by various methods is given, assuming 
fixed values for axial load and minor axis moment. 

I t is mos t encouraging to observe that for single 
curvature, the Young and Chen predictions are in very 
close agreement , even though their origins are different. 

Table 2. Comparison* of Major Axis Biaxial Moment 
Capacities (Kip-Ft) Predicted by Various Design Methods 

^m 

AISC** 
CSAS16.1 
Chen 
Young 

1.0 

43t 
117 
167 
167 

0.6 

43t 
157t 
2091 
183 

0.4 

43t 
157t 
209t 
198 

*Based on Young's example (Ref 3): W12X65, L = US', 
0.3P., M y(top) OAMpy, My^^ = 0. 

**Determined by applying 0.6 times ultimate thrust and 
minor axis moment, and multiplying resulting major axis 
working stress design moment, by 1.67 for direct com
parison. 

tStrength controls (''stocky" column). 

Similar comparisons are made in Table 3 for uniaxial 
bending. 

VERIFICATION WITH TESTS 

BirnstieP^ carried out refined testing of 5x5 and 6x6 
W-shaped beam-columns loaded in single curvature 
biaxial bending.^^ Two comparisons of design equations 
with these tests have been made. In the earlier com
parison by Pillaii^ Chen's equation was not evaluated. 
Springfield's evaluation^^ of the Chen equation vs. Eq. 
(4) showed that, for the Birnstiel tests, Chen's equation 
was extremely reHable (Mean 1.01, SD 0.074), while 
Eq. (4) was conservative (Mean 1.20, SD 0.085). 

A further verification of Chen's equation is its good 
agreement with Birnstiel's incremental analytical pro
cedure. ^̂  Aside from one result, in which the error was 
7 % conservative, all the other values agree to within 3 % . 

LIMITATIONS OF THE PROPOSED METHOD 

Before adopting designs according to the proposed inter
action equation, some general thought should be given 
to the extent to which yielding under service load is 
likely and, in view of this, whether further restrictions 
on the design are necessary. In Table 4, for each of two 
ratios of actual axial load to yield axial load and three 
ratios of M^^/M^cx, the corresponding ratios of My/Mj,cy 
have been determined from the proposed interaction 
equation, Eq. (11). In evaluating Af̂^ and A/^, a W12X65 

Table 3. Comparison* of Major Axis Uniaxial Moment 
Capacities (Kip-Ft) Predicted by Various Design Methods 

Cm 

AISC** 
AISC (plastic) 
CSAS16.1 
Chen 
Young 

1.0 

93 
93 
93 
93 

101 

0.6 

116t 
136 
137t 
137t 
130 

0.4 

116t 
136 
137t 
137t 
132 

*Based on Young's example (Ref. 3): W12X65, L - 118% 
P = 0.6Py. 

**Determined by applying 0.6 times ultimate thrust and 
minor axis moment, and multiplying resulting major axis 
working stress design moment by 1.67 for direct com
parison. 

fStrength controls ("stocky" column). 

P/Py 

0.3 

0.7 

M, 

- '*^ PCX 

0.2 
0.5 
0.8 

0.2 
0.5 
0.8 

Table 4* 

My 

•'•^ pcy 

0.963 
0.812 
0.516 

0.994 
0.932 
0.726 

/ . 

10.8 
10.8 
10.8 

25.2 
25.2 
25.2 

fbx 

6.55 
16.4 
26.2 

2.81 
7.02 

11.24 

fby 

52.6 
44.3 
28.2 

32.9 
30.9 
24 1 

/ 
1.7 

41.1 
42.0 
38.3 

35.8 
37.1 
35.6 

*Based on a W12X65 section, A36 steel, Eq. (11). 
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6 

5 

4 

ND 3 

n 

2 

1 
1 

1 

^ 

- 1 r 
- 1 . 6 ^ 

P/Py 

n P/Py 

-?? = 1.4 + P/Py 

0.1 0.2 0.3 0.4 0.5 

P/Pw 

0.6 0.7 0.8 0.9 1.0 

* 7? FOR W SHAPES IN WHICH b^ = d 

Fig. 2. Plot of f and v vs. P/Pv 
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PLOT OF THE INTERACTION EQUATION 

fCmx Mx 
"M ucx 

a 
M pcxJ 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

rCmx MxA^ TCmv Mv^^ 
M + i 

-my iviy 

ucx M a 
M y ^ ^ 

ucy M + 
M, 

pcxy M pcyy 

N^ 

/ 
X 

s. 1 X^ 

X ^̂  

^^ 

0.1 0.2 0.3 0.4 

fCpny My] 

0.5 0.6 0.7 0.8 0.9 

M, a Mr 'ucy j V'Tcyy 

Fig. 3. Plot of Interaction Equations {11) and {13) 
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section of A36 steel has been assumed and the extreme 
corner fiber stress has been calculated elastically and 
divided by a load factor of 1.7. I t will be noted that, 
for the lower ratio of axial stress, the yield stress of 
36 ksi has been exceeded by an appreciable margin. 
This rather simple calculation demonstrates that the 
onset of yielding under service loads is a real probability 
for sections designed according to the proposed inter
action equation. 

In the writer's view, three precautions are desirable 
when designing beam-columns by the proposed pro
cedure. These are: 

1. Sections should be proportioned so that influences 
such as wind or earthquake, which are reversible, should 
not, when taken alone, cause stresses in extreme fibers 
which exceed the nominal yield strength. 

2. Sections should be proportioned such that influ
ences which are variable, such as combined wind plus 
live load (taken at a load factor of 1.5 reduced to 
account for probability of occurrence, say by 0.7), 
should not in themselves cause extreme fibre stresses 
which exceed the nominal yield strength of the material. 

3. Keep in mind the fact that the procedure was 
developed on the assumption that the section is compact. 

It appears that further advances in the design of bi-
axially loaded beam-columns must recognize shape 
dependency. In the writer's view, this creates no prob
lem, since a very large portion of the columns being 
designed in buildings are of wide flange shape. If we are 
able to develop the exponent required for Chen's pro
posed equation for all wide flange shapes and for square 
and rectangular tubular sections, almost the whole 
practical field will have been covered. 

CONCLUSIONS 

1. The interaction equations presently in use are not 
sacrosanct. Indeed, their origin appears to be intuitive 
and, over the years, various modifications for improve
ment have been proposed. 

2. Any improvement in the prediction of the capacity 
of axially loaded columns will improve the prediction of 
the capacity of beam-columns. 

3. Any improvements in the prediction of the 
capacity of beam-columns must be dependent on cross-
sectional properties. 

4. Several acceptable methods of design for bi-
axially loaded beam-columns have been developed by 
CRG Task Group 3. 

5. The design expressions suggested by Chen et al 
are reliable compared with precise design methods, with 
tests, and with a design method independently de
veloped in England. 

6. The exponential interaction equations appear 
mathematically complex, but with the design aids 
provided in this paper their evaluation is simple. (Their 
evaluation is equally simple for designers using electronic 
calculators with exponent and log functions.) At the 
same time, the exponential design equations represent 
an upper limit to the degree of refinement in design and 
predictability of capacity. 

7. Considerable economy of column section can 
result by designing in accordance with the procedure 
recommended by Task Group 3. 

RECOMMENDATIONS 

1. The interaction equations suggested by Chen 
et al are recommended for design of compact W shape 
beam-columns under biaxial eccentric load. 

2. For any framework in which lateral deflection is 
critical, an evaluation of the stresses at service load 
should be made to assess the validity of calculated 
elastic lateral deflection. 

3. Further primary research is recommended to 
expand the range of applicability of the equations to 
other beam-column shapes, including square and rec
tangular tubular sections.* 

4. Secondary research is recommended to evaluate 
further the applicability of the equivalent moment 
coefficients presently used, and to check the apparent 
conservatism of the present lateral torsional buckling 
major axis bending stress reductions. 
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