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NEED FOR SEISMIC DRIFT CONTROL 

A L L BUILDINGS which may be subjected to earthquake 
forces need drift control to insure structural integrity, 
and to minimize non-structural damage. Adequate drift 
control may be automatically obtained by a code stress 
design, but more often it is not. Even shear walls and 
braced frames may be too flexible if they are tall and 
narrow, especially when they are subjected to forces large 
enough to cause them to yield in flexure or to rock on 
their foundations. Stress generally will not govern the 
design of ductile moment frames, since they are expected 
to yield under strong seismic forces. 

Threats to the structural integrity of ductile moment 
frames will generally not come from excessive axial 
forces due to frame rocking moment, but might come 
from excessive member or joint distortions or PA moment 
due to excessive frame flexibility. Controlling drift to a 
limit of 2 or 3 % for probable maximum seismic forces 
would generally assure controlled ductile yielding, since 
this would limit member hinge and joint rotation to 
about one degree. PA moments would be limited to 
about 10% of the forces causing the drift, even for tall 
buildings, whose seismic response forces are generally 
quite low. 

The safety hazard with regard to non-structural 
damage is generally concerned with the securing of non
structural elements to the frame so that they do not fall. 
To keep non-structural elements from falling, their con
nections to the structural frame must accommodate the 
diff'erence between the distortion of the non-structural 
element and the frame distortion. This is made easier if 
the frame distortion is tightly controlled, but the connec
tions can be made to accommodate drifts of at least 2 or 
3 % . Stricter control of drift to minimize interruption of 
service and to control economic loss is another matter. 
For this purpose it is desirable to control the drift as 
tightly as economics and other practical considerations 
allow. 

Edward J. Teal is Director of Structural Engineering, Albert C. 
Martin and Associates, Los Angeles, Calif. 

DIFFICULTIES IN SETTING SEISMIC DRIFT CRITERIA 

Criteria for drift have been difficult to establish, par-
cially because of lack of knowledge about the specific 
tonsequences of drift, but much more because of the 
wide range of opinions about the possible input ground 
motions and the building response to these ground mo
tions. At the present time any fixed drift limit which 
applies regardless of the input motion will result in widely 
diff^erent flexibility control for diff'erent buildings, due to 
widely diff'erent motion predictions for them. At the 
same time, the practical economic limits of flexibility 
control for a particular type of building frame are fairly 
narrow and constant. In particular, economically prac
tical flexibility control of moment-frame buildings falls 
into a fairly narrow band. It is not economically prudent 
to design above or below that range. 

Since drift is the product of the two variables, building 
flexibility and seismic force, and since building flexibility 
is determinate and predictable, whereas seismic lateral 
force is not, we need to separate the two variables. We 
need to evaluate buildings on the basis of their flexibility, 
a determinate building property independent of specific 
lateral force predictions. Since we are concerned with 
dynamic forces which depend on flexibility and weight, 
however, it is the dynamic flexibility evaluation which is 
needed. An index for this property is therefore suggested. 

THE DYNAMIC FLEXIBILITY INDEX 

The Dynamic Flexibility Index is defined as the average 
building drift caused by a lateral force equal to the total 
weight of the building, where the average building drift 
is defined as the lateral roof displacement divided by the 
building height. Since, again, this is a dynamic flexibility, 
the total lateral force must be distributed throughout the 
height of the building in direct proportion to the variation 
of dynamic response acceleration. The acceleration, 
relative to the base, increases approximately uniformly 
with height for most buildings, which leads to a triangular 
lateral force distribution, with the maximum lateral 
force at the top. This is the well known code static dis
tribution, confirmed by many dynamic time-history 
computer response computations. A more accurate dis-
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tribution is seldom justified, at least for the purpose of 
obtaining the Dynamic Flexibility Index. 

Figure 1 illustrates the dimensions and symbols for 
drift and dynamic flexibility. This is a basic diagram for 
drift. I t could represent a single frame or a single story, 
but it is intended here to represent the building as a 
whole. Therefore W, in this context, represents the total 
weight of the building, and the seismic lateral force due 
to the building's dynamic response to a given base motion 
is proportional to the dead weight of the building and the 
response coefficient C. A horizontal force equal to the 
shear coefficient C times the weight W causes a hori
zontal displacement A^ at a height H. The ratio of A^ 
to the height H is the drift coefficient. It is also the 
tangent of the angle 6, and, since the angle is small, it is 
equal to the drift angle 6, itself, in radians. Thus a 1% 
drift represents a drift angle of 0.01 X 57°, or about 
3̂ 2 2. degree. 

The drift coefficient for a given lateral force coeffi
cient C is therefore represented by the equation 

d = AH/H 

When the displacement is computed for a horizontal 
force equal to the total weight of the building (C = 1.0), 
the lateral force coefficient variable is normalized. The 
ratio of this displacement to the height H provides a 
standard measure of the dynamic flexibility of a building. 
The displacement for a lateral force coefficient C equal 
to 1.0 can also be expressed as A^ over the coefficient used 
to determine A^. Thus, the Dynamic Flexibility Index, 
represented by a, is given by the equation: 

A„/C 

This concept is simple, but basic. Buildings have a 
fixed dynamic property by which they can be compared, 
independent of ground motion predictions. This property 

C W 

DRIFT COEFFICIENT (FOR GIVEN C) 9 = A/H 

WHEN A ^ COMPUTED FOR C = 1.0 

DYNAMIC FLEXIBILITY INDEX cC = % - = ^ 
H C 

determines their approximate fundamental period of 
vibration, which determines their response to any given 
ground motion, which determines the distortion which 
would result from that response. All of these factors are 
linked together and stem from the dynamic flexibility, 
which is measured by the building's flexibility and weight. 

FUNDAMENTAL PERIOD DETERMINATION USING THE 
DYNAMIC FLEXIBILITY INDEX 

As stated above, the fundamental period of vibration is 
approximately determined by the dynamic flexibility. 
The fundamental period T is equal to a constant times 
the square root of the mass times the flexibility. If the 
period constant is represented by C^^ the mass is given 
by W/g^ and the flexibility is given by the displacement 
over the force causing the displacement. 

T = Cr 
WA 

If the gravity acceleration g is moved into the period 
constant and the force is represented by CW, 

W 

'^^\CW'^ T - C^ V( 

Since the Dynamic Flexibility Index is given by 

AH/C 

H 

then 

T = Cr'SlaH 

Unfortunately the quantity C^ is a constant only for a 
single degree of freedom system. For multi-degree of 
freedom (MDF) systems, Crp varies with the deflected 
shape, and period calculations become complicated. The 
computations are so tedious that they are usually per
formed by a computer and this creates a mystique about 
M D F periods which leaves many engineers without any 
feel for estimating periods. A good estimate of building 
periods is all that is needed for seismic design, considering 
the accuracy of ground motion prediction and the rest 
of our assumptions. We can generally estimate periods 
with sufficient accuracy for design by considering the 
building as a simple cantilever member. 

For a prismatic cantilever with the weight (lateral 
force) uniformly distributed and considering: 

Bending only: Crp = 0.26 

Shear only: C^p = 0.29 

For a prismatic cantilever with the weight (lateral 
force) concentrated at the top considering: 

Figure 1 Bending only: Crr = 0.32 
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If the building flexibility is varied to provide uniform 
drift regardless of lateral force distribution and drift 
component (bending or shear): 

Cj, = 0.23 

I t can be seen that the value of Cjr is reasonably 
predictable. For the average building, a value of 0.25 
can be assumed, yielding the formula: 

T = 0.25 V A / C (A in inches) 

The period can be expressed in terms of the Dynamic 
Flexibility Index (a) and the building height (H). For 
convenience, H is given in feet and the square root of 
12 is moved into the constant. Then : 

T = 0.89 'SJaH 

THE SEISMIC DRIFT INDEX 

Vibrating accelerations, and therefore forces, depend 
on the period of vibration, given by r = 0.S9 \Ha. 
Therefore, drift control for buildings of different height 
cannot be equated 'on the basis of the Dynamic Flexibility 
Index alone. An index which includes the influence of 
a and H on period, and therefore on lateral forces, is 
needed. For equal drift control independent of building 
height, the index must increase the dynamic flexibility 
with height at the same rate that the lateral force reduces 
with height. We therefore need to examine the variation 
of lateral force in terms of period. 

Seismic lateral force is usually given in the form C = 
^(T=i)/ ^^? where C(y_i) represents the intensity of ground 
motion measured by 2Tr/g times the spectral velocity of 
a system with a fundamental period equal to 1.0. If the 
envelope of velocity response spectra for probable ground 
motions is represented by a constant velocity for a range 
of periods, the formula becomes C = C(^j^^-^)/T for SDF 
systems, and C = C(7. = i)/ T^^ for M D F systems of uniform 
drift and weight. 

Buildings do not have exactly uniform drift, the 
spectral velocity is never constant over even the middle 
range of periods, and responses are not completely elastic. 
Therefore there is not agreement about the exponent for 
T. However, the spread generally falls between 7"̂ ^ and 
7"^ .̂ Lack of agreement about the base motion intensity 
factor C(2.^i) does not affect the index. 

It can be seen that a Seismic Drift Index in the form 
Bi = a/H^ will equate drift control independent of 
building height. If a compromise force formula C = 
^{T=i)/^ is assumed, the Seismic Drift Index for equal 
drift control becomes Di = a/H"^^. This can be checked 
by noting: 

If a is proportional to H^^: 

T becomes a function of 

C becomes a function of 1///^^'^^ = 1///^^ 

For 6 = aC, the H factor cancels out. 

However, since it is easier to control drift with height, a 
Seismic Drift Index which reduces drift a little with 
height seems practical and more reasonable. The recom
mended Seismic Drift Index is therefore Di = a///^^. 

TABLES SHOWING THE JUSTIFICATION AND 
APPLICATION OF THE INDEXES 

The rest of this discussion will center around three tables 
which show the practical variation limits of the proposed 
Indexes by reference to a number of representative 
buildings, and two tables which show the effects of vary
ing the Indexes for buildings of different heights. The 
definitions and bases for the variables, which were 
briefly covered in the introduction of the Indexes, will 
be discussed more thoroughly in reference to the tables 
to which they apply. 

Table 1—This table shows the flexibilities and periods 
determined for 16 steel moment frame buildings located 
in the Los Angeles area. The buildings were analyzed 
by a computer program which included all components 
of frame drift flexibility, i.e., column and girder bending 
and shear, joint panel zone bending and shear, and 
column axial deformations. The computer model in
cluded all structural frame elements, with no allowance 
for non-structural elements. Neglect of non-structural 
elements for strong motion analysis has been validated 
by the San Fernando Earthquake accelerograph readings 
for several of the buildings. Time-history dynamic 
analyses for a number of earthquake ground motions 
were run on each building, and the flexibilities were ob
tained as averages from the lateral forces and the dis
placements computed for those ground motions. The 
buildings were designed by a number of different engi
neering offices and therefore represent a broad range of 
design practice. 

In Column 2, / / i s the effective building height, i.e., 
the height from the building base level, where the build
ing is restrained against significant displacement, to the 
roof level. Penthouse weights are considered concen
trated at the roof level. The dynamic flexibilities involve 
only the building weight which is included in the effective 
height. 

The period constant C^ were computed by substitut
ing into the formula T == C^^aH the values computed 
for T and a, and the height H (in inches). It can be seen 
that a CT value of 0.25 for the typical building is indeed 
a reasonable estimate. The range of values is not great 
enough to significantly influence design or evaluation 
considering the period accuracy warranted by the ca-
curacy of the other seismic response variables. 

Seismic Drift Index values vary widely, from a low 
of 0.0049 to a high of 0.0236. However, the low Indexes 
are for hospitals designed to comply with the intent of 
the new State of California Hospital Code. This intent is 
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Table 1. Computer Dynamic Analysis of 16 Steel Moment Frame Buildings 

(1) 
Building 

Type 

School 
Hospital 
Hospital 
Office 
Hospital 
Office 
Office 
Hospital 
Office 
Hospital 
Office 
Office 
Office 
Office 
Office 
Office 

(2) 
/ / ( f t ) 

29 
90 

107 
113 
132 
150 
170 
184 
244 
305 
325 
358 
375 
492 
640 
677 

(3) 
a 

0.046 
0.060 
0.027 
0.045 
0.025 
0.090 
0.130 
0.098 
0.058 
0.100 
0.063 
0.100 
0.100 
0.065 
0.060 
0.060 

(4) 
T (sec) 

1.0 
.2.2 
1.5 
2 .0 
1.5 
2 .8 
4 .1 
3.2 
3.0 
4 .7 
4 .0 
5.5 
5.4 
4 .5 
5.4 

1 6.2 

(5) 
Gy 

0.25 
0.27 
0.25 
0.25 
0.26 
0.22 
0.25 
0.25 
0 .23 
0.25 
0.26 
0.27 
0 .24 
0 .23 
0.25 
0.28 

(6) 
Di 

0.015 
0.0132 
0.0056 
0.0093 
0.0049 
0.0170 
0.0234 
0.0136 
0.0092 
0.0150 
0.0091 
0.0140 
0.0152 
0.0082 
0.0069 
0.0068 

(7) 
OH for 

c = o.so/ry^ 
(%) 
2.30 
1.80 
1.05 
1.12 
0.98 
2 .32 
2.46 
1.80 
1.33 
1.80 
1.20 
1.75 
1.75 
1.23 
0.96 
0.90 

(8) 
OH for 

c = o.i8/r>^ 
(%) 
0.82 
0.73 
0.40 
0.57 
0.37 
0.97 
1.18 
0.77 
0.60 
0 .83 
0.57 
0.76 
0.84 
0.55 
0.46 
0 .44 

(9) 
OH for 

c = 0.033/ry^ 
(%) 
0.15 
0.15 
0.08 
0.12 
0.07 
0.21 
0.28 
0.17 
0 .13 
0.20 
0 .13 
0.19 
0.21 
0 .13 
0.11 
0.11 

to try to insure that the hospital stays operational 
through a strong earthquake ground motion. The highest 
Index is for an office building apparently designed with
out drift control in mind. From an examination of these 
buildings it would seem that the practical Seismic Drift 
Index range for steel moment frame buildings is from 
0.005 to 0.025. FlexibiUty control below 0.005 is not 
very practical and a Seismic Drift Index limit of 0.025 
bears no significant cost penalty. The prudent Seismic 
Drift Index limit depends on the probable ground motion 
intensity exposure and the consequences of excessive 
drift, mostly in relation to non-structural damage. 

To indicate the range of drifts which would occur in 
these buildings if they were subjected to seismic forces, 
drifts are shown for three lateral force formulas. 

The force level shown in Column 7 represents one 
version of a maximum credible seismic force. The ground 
motion intensity factor C(^>ji^^^ = 0.50 represents a very 
strong earth-shaking. The variation of response given by 
1/7"^^ represents an approximate M D F response to a 
ground velocity which is essentially constant for the 
period range involved. It may be noted that most spec
trum response design assumes a constant velocity in this 
period range. The currently popular tripartite log spec
trum plots generally assume this. The tripartite plots 
are SDF plots where the spectral acceleration (Sa) is 
equal to 27r times the spectral velocity (Sv) divided by T. 
Since Sa/g represents the lateral force coefficient C, then 
C is also given by (27r/g)(Sv/T). 

The use of these plots for M D F systems requires 
combining of modal responses on a modal participation 
basis. For an assumed deflected shape (generally constant 
drift) the M D F response can be approximated closely by 
modifying the exponent applied to the fundamental 
period T. The assumed value for (27r/g)Sv is represented 

by the ground motion intensity factor C(JT_J). A factor 
of 0.50 therefore assumes a damped Sv of about 2.5 ft/sec. 
This is a very brief explanation of the credible lateral 
force formula used to illustrate the approximate upper 
limit of drift represented by the Seismic Drift Index. It is 
not the intention here to espouse any particular force 
formula, but to provide some indication of the maximum 
drifts which must be considered. The form of the formula 
has been checked against many time-history dynamic 
computer analyses, and has proven a good approximation 
of response variation with T. 

The force level shown in Column 8 is the latest 
SEAOC formula, with modifying factors of 0.67 for a 
moment frame and 4 for drift. Therefore, 

C = 
0.67 X 0.67 X 4 

0 .18/ r> 

The force level shown in Column 9 is the SEAOC 
formula which is still in general use, modified by a frame 
factor of 0.67. Obviously this formula represents a weak 
ground motion intensity and the variation of force with 
1/7"^^ does not fit the response computed by dynamic 
analyses. This formula, factored for frame types and 
working stresses, was not intended to represent real forces. 
However, drift has commonly been checked for this force 
formula, if it was checked at all. 

Table 2—This table shows the variation of the funda
mental period (T) with variations in the Seismic Drift 
Index (Di) and the eff'ective height ( / /) . Given any two 
of the variables, the third can be readily estimated from 
this table. The designer can also readily picture the real 
meaning of the Seismic Drift Index. It must be very 
obvious that a building with a period over 1 sec. for a 
height of 25 ft or a period of 11 sec. for a height of 800 ft 
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Table 2. Variation in Fundamental Period T (sec) with 
Variations in H and Di* 

Eff. 
Ht . 
H 
(ft) 

25 
50 

100 
200 
300 
400 
500 
600 
700 
800 

0.0025 

0.30 
0.59 
0 .94 
1.50 
1.90 
2 .44 

0.0050 

0.50 
0.80 
1.3 
2 .1 
2 .6 
3 .3 
3.9 
4 . 4 
4 .9 
5 .4 

Drift Index {Di) 

0.0075 

0.64 
1.0 
1.6 
2 .6 
3 .3 
4 .1 
4 .8 
5.4 
6 .0 
6.5 

0.010 

0.74 
1.2 
1.9 
3.0 
3.8 
4 .7 
5.5 
6.2 
6.9 
7 .5 

0.015 

0.90 
1.5 
2 .3 
3.7 
4 .7 
5.8 
6.8 
7.7 
8.4 
9 .3 

0.020 

1.1 
1.7 
2 . 7 
4 . 3 

• 5.7 
6.9 
8.0 
8.9 

10.1 
11.0 

is a very flexible building. The Dynamic Flexibility Index 
could have been used in this table in place of the Seismic 
Drift Index, but the Seismic Drift Index was chosen 
because it has more general use. 

Table 3—This table shows the variation of drift (^^) 
with variations in the Seismic Drift Index {Di) and the 
eff'ective height {H). The lateral force formula C = 
0.50/T^"^ is the formula used in Column 7 of Table 1 
and covered in the discussion for that table. Obviously 
the drifts can be directly factored for different base 
motion intensity factors (C(/^ = i)). It can be seen that the 
drifts computed for this force formula and the Seismic 
Drift Index formula decrease with increase in building 
height. If the same Seismic Drift Index formula but a 
force formula in which C varies inversely with 7"̂ ^ 
(instead of T^^) were used, the drift would not change 
with building height. 

The drifts shown in the table are average drifts for the 
building heights shown. Tha t is, they are computed on 
the basis of roof displacement divided by effective build
ing height, and they imply uniform drift if the word 
' 'average" is not considered. I t should be recognized 
that story drifts will not be uniform at any instant of time 

Table 3. Variation in Average Drift, OH (%) for 
C = 0.50/ry^, with Variations in / / a n d i)z* 

Hih) 

25 
50 

100 
200 
300 
400 
500 
600 
700 
800 

0.0025 

0.69 
0.64 
0.62 
0.57 
0.55 
0.52 

0.0050 

1.1 
1.0 
1.0 
0.9 
0.9 
0.8 
0 .8 
0.8 
0.8 
0.8 

0.0075 

1.4 
1.4 
1.3 
1.1 
1.1 
1.0 
1.0 
1.0 
1.0 
1.0 

0.010 

1.7 
1.7 
1.6 
1.4 
1.3 
1.3 
1.2 
1.2 
1.2 
1.2 

0.015 

2 .2 
2 .1 
2 .0 
1.8 
1.8 
1.7 
1.7 
1.6 
1.6 
1.5 

0.020 

2 .8 
2 .6 
2 .3 
2 .2 
2 .1 
2 .1 
2 .0 
1.9 
1.9 
1.9 

during an earthquake, and even the envelope of maxi
m u m drifts will not show uniform story drift maximums. 
The term "average building drift" assumes that some 
story drifts will be exceeding the average, while others 
are less than the average. The variation in story drifts 
cannot be anticipated by any design to any given lateral 
force distribution, since each earthquake generates 
random variable motions with their own constantly 
changing unique combinations of modal responses. 
Elastic time-history dynamic computer analyses have 
been run on many buildings for many ground motion 
inputs. A few inelastic analyses have been run for simu
lated ground motions factored up to force extensive in
elastic yielding. These analyses indicated that some 
individual maximum story drifts exceeded the maximum 
average building drift by a factor as great as 2. These 
buildings were not entirely regular, but they contained 
no strong dynamic irregularities. All of this indicates 
another variable which must be considered, but which 
has reasonably predictable upper limits if the building 
has no excessively flexible stories. 

Table 4—Table 4 shows the computed elastic Dynamic 
Flexibility and Seismic Drift Indexes for a number of 
buildings with seismic frames other than steel moment 

Table 4 

Concrete Moment Frame Buildings 

Build
ing 

1 
2 
3 
4 
5 
6 

/ / ( f t ) 

66 
125 
124 
143 
180 
200 

a 

0.016 
0.020 
0.006 
0.011 
0.031 
0.016 

Di 

0.004 
0.004 
0.0012 
0.0021 
0.005 
0.0027 

^^for 

c = o.is/ry 
(%) 

0.30 
0.30 
0 .13 
0.18 
0 .40 
0 .24 

Build
ing 

1 
2 
3 
4 
5 
6 

Concrete Shear Wall Buildings 

H({t) 

67 
84 

116 
124 
161 
224 

a 

0.013 
0.010 
0.003 
0.002 
0.005 
0.022 

Di 

0.0035 
0.0023 
0.0006 
0.0004 
0.0010 
0.0037 

l9ij for 
C = 0A8/Ty 

(%) 

0.27 
0.20 
0.08 
0.06 
0.10 
0.29 

Steel Braced Frame Buildings 

Di = a/Ry^. 

Build
ing 

1 
2 
3 

/ / ( f t ) 

114 
210 
270 

a 

0.014 
0.040 
0.062 

Di 

0.0029 
0.0067 
0.0092 

C= OAS/T>^ 

(%) 

0.25 
0.44 
0.60 

60 

E N G I N E E R I N G J 0 U R N A L / A M E R I C A N I N S T I T U T E OF STEEL C O N S T R U C T I O N 



frames. The qualification "elastic" is necessary here 
because the flexibility of most of these buildings begins 
to change radically at the level of lateral force causing 
yielding or rocking to start. This is in contrast to the 
behavior oi ductile moment frames. A number of detailed 
inelastic analyses of ductile steel moment frames have 
shown that their ''effective" average flexibility did not 
change markedly for ground motions more than twice the 
intensity of that causing first yielding. In fact, the in
elastic roof displacement has almost always been less 
than if the building had remained elastic for the same 
ground motion. This is, of course, the measure of their 
"eflTective" average building flexibility. Inelastic dynamic 
analyses have not been run on ductile concrete moment 
frame buildings. Ductile concrete frame elements have 
been tested, and simulated inelastic analyses indicate 
that their eff'ective dynamic flexibility should not increase 
radically until inelastic distortions become large. 

Most of the buildings shown here were analyzed by 
simplified hand calculations, rather than detailed com
puter analyses. However, the Indexes obtained are 
believed to be accurate enough for the comparative use 
intended. The buildings are numbered for reference in 
the following discussion. 

Concrete Moment Frame Buildings—Buildings listed as 1 
through 4 are in California, Building 5 is in Managua, 
and Building 6 is in New Zealand. Buildings 1, 2, and 5 
have non-ductile frames, and Buildings 3, 4, and 6 have 
ductile frames. The very low Seismic Drift Index of Build
ing 3 is the result of 1 ft-6 in. x 6 ft-0 in. exterior columns 
at 27 ft o.c. for an 82-ft wide building. The spandrels are 
1 ft-6 in. X 4 ft-0 in. and the story height is 12 ft. Shear 
walls resist seismic forces on the other axis. This is there
fore, an example of about the lowest frame Seismic Drift 
Index to be expected. Buildings 4 and 6 are rather typical 
concrete ductile moment frames. 

The Dynamic Flexibility Indexes for the non-ductile 
concrete frame buildings will increase rapidly after yield 
capacity is reached, due to the fact that the frame will 
begin to lose strength. The building's fundamental period 
can be expected to increase proportionally as the ground 
motion intensity increases above yield intensity. The 
Dynamic Flexibility Index can therefore be expected 
to -increase roughly with the square of the increase of 
ground motion intensity above that at frame yielding. 
Of course the frame would lose all drift control with any 
serious deterioration of strength. 

I t can be seen that concrete frames generally control 
drift well up to yield capacity, but non-ductile frames will 
rapidly lose drift control for forces greater than those 
causing yield. 

Concrete Shear Wall Buildings—Buildings 1 and 6 are in 
Managua. The other buildings listed are in California. 
It can be seen that the two Managua Shear Wall build

ings are not materially less flexible than the Managua 
Concrete Frame building. This comparison is an impor
tant use of the Dynamic Flexibility Index. Shear wall 
Building 6 was little damaged by the recent earthquake, 
while the adjacent Concrete Frame building (5) was 
heavily damaged. Without a standard flexibility index, it 
has been widely assumed that the diff'erence in per
formance was largely due to the diff'erence between the 
flexibility of a shear wall building and a moment frame 
building. This then leads to overconfidence in the drift 
control of a shear wall building, per se, as opposed to 
the drift control of a moment frame, per se. The real 
reasons for the difference in performance of these two 
buildings are readily seen if the examination is not 
stopped because of an assumption about flexibility. I t 
is important to be able to compare earthquake per
formance on the basis of a standard index. 

It is also noted that Shear Wall Building 2 has a 
Dynamic Flexibility Index similar to Concrete Moment 
Frame Buildings 4 and 6. This emphasizes the danger in 
being too quick to generalize regarding the potential for 
drift control of diff'erent framing systems. 

The Dynamic Flexibility Indexes shown for all Shear 
Wall buildings applies only until the shear walls start 
to rock. A wall will start to rock when the resistance to 
rocking is exceeded. When a shear wall starts to rock, 
it will start to lean on the building frame and the building 
flexibility will start to progress from that of the shear wall 
to that of the frame. The drift control will start to depend 
on the flexibility and strength of the frame. The only 
other control is the balance between kinetic energy 
input and the potential energy involved in raising the 
e.g. of the wall due to rocking. This potential energy 
control is reasonably eff'ective at limiting drift only for 
low velocity motions. Since the energy is related to the 
velocity squared, it takes a large rotation to balance high 
velocities. 

It might be worthwhile to stop and discuss the term 
' 'rocking moment" vs. the term "overturning moment ." 
The term "overturning moment ," which is standard, 
presents problems in dealing with laymen and the pro
fession. Laymen are startled by the specter of the whole 
building overturning. The profession knows that build
ings of any size never overturn, and elements of buildings 
seldom overturn. There is a tendency on the part of 
engineers to depreciate overturning forces on the basis 
that buildings have not been known to overturn. The 
term "rocking moment" might dispel some of the alarm 
on the part of laymen, and more engineers might agree 
that elements such as shear walls or braced frames will 
rock when the resistance to rocking is exceeded. If the 
walls are short enough and lightly loaded they might even 
overturn, as did the shear elements of the Four Seasons 
apartment building in Anchorage, Alaska. If their sup
port fails, they may overturn as did the stair towers of 
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the Olive View Hospital in San Fernando. Whole build
ings have overturned, but because of complete loss of 
foundation support due to liquification, as at Nigata, 
Japan. But mostly they will just rock. 

Steel Braced Frames—The comments made for shear wall 
systems apply generally to steel braced frames as well. 
The three buildings listed have quite different flexibili
ties, as shown, and they have different rocking moment 
resistance capacities. Building 1 is a hospital building 
designed to the new State of California Hospital Code on 
the basis of a site evaluation which required a design 
lateral force C of 0.45. The 48-ft wide braced bays have 
8-ft diameter deep belled caissons designed for a rocking 
moment axial force of about 6000 kips. Obviously this 
building's Index represents almost a lower limit of flexi
bility for a braced frame. The flexibility of Building 1 is 
designed to remain constant over the full range of prob
able earthquake shaking. 

The braced frames of Building 2 are used in combina
tion with some moment frames. The braced frames have 
rocking moment resistance for a lateral force C of about 
0.08. At this force level the braced frames will start to 
rock and lean on the moment frames. After rocking 
starts, the Dynamic Flexibility Index depends mostly on 
the flexibility of the moment frames. 

Building 3 has no moment frames to back up the 
braced frames. Control of flexibility after rocking of these 
frames starts (at C c^ 0.04) will depend only on the 
energy balance between the velocity energy and the 
potential energy change involved in rocking. 

The very definite possibility of seismic forces greatly 
exceeding code required design forces should be con
sidered in regard to drift as well as strength. 

Table 5—Three buildings subjected to strong earth
quake ground motions during the 1971 San Fernando 
earthquake were analyzed for their change in flexibility 
when their elastic capacity was exceeded. The first two 
buildings had accelerographs which recorded the build
ing motion at three levels. The change in period and 
flexibility was determined from the accelerograph record
ings. The change in flexibility was also computed by 
applying the inelastic considerations noted in the discus
sion of Table 4, and good correlation with the instrument 
records was obtained. 

Concrete Moment Frame Building—The non-ductile concrete 
frame building has a yield capacity lateral force coeffi
cient which indicates an elastic response up to a ground 
motion intensity factor of Cy c^0.18 {T = 1). The 10% 
damped response spectrum for the accelerograph record 
indicates that the building was subjected to a lateral 
force given by a ground motion intensity factor of CSF 
0^0.26 (T = 1). Period measurements from the instru
ment record indicate three stages of building response. 

Table 5 

Elastic 
Inelastic 

Elastic 
Rocking 
Frame 

Elastic 
Rocking 
Frame 

Concrete Frame Building 
(Effective Height 660 

T 
(sec) 

0 .90 
1.5 

a 

0.016 
0.036 

Di 

0.004 
0.009 

Cy 

0.18 

CSF 

( r = i ) 

0.26 

Shear Wall Building 
(Effective Height 161') 

T 
(sec) 

0 .8 
1.0 
2 .5 

( 
T 

(sec) 

0.8 
1.25 
2 .5 

a 

0.005 
0.008 
0.054 

Di 

0.0010 
0.0015 
0.010 

Cy 

0.06 

CSF 
(T=l) 

0.12 

Shear Wall Building 
Effective Height 84') 

a 

0.010 
0.025 
0.054 

Di 

0.0023 
0.0055 
0.012 

Cy 
(T= 1) 

0.16 

CSF 
(T= 1) 

0.26 

The first short section of the record shows the effect of 
non-structural elements in reducing the period to below 
the elastic period of the frame. The next section of the 
record shows the building vibrating at the frame elastic 
period. The third section of the records shows an increase 
in period from T = 0.90 to 7" = 1.5. This change in 
period is approximately equal to the ratio between the 
maximum ground motion intensity and the ground 
motion intensity causing frame yield. Relative roof dis
placement, as obtained from a comparison of the integra
tion of the ground and roof acceleration records, should 
show an increase approximately equal to the square of 
the period change. I t did. The result is shown as a change 
in the Seismic Drift Index from 0.004 to 0.009. For 
ground intensities greater than that of the San Fernando 
earthquake, the drift control would deteriorate rapidly, 
seriously threatening the structural integrity, as well as 
causing serious non-structural damage. 

1d1-ft-high Shear Wall Building—This building was also 
instrumented, and recorded three stages of vibration 
during the San Fernando earthquake. The first short 
section again showed effects of non-structural damping. 
The second section shows a period which is close to that 
derived analytically for the elastic dynamic flexibility of 
the shear walls. A third stage shows the period increasing 
to about 2 5 % greater than the elastic period. This, then, 
increases the Dynamic FlexibiUty Index by about (1.25)^. 
The change in flexibility can be traced analytically by 
deriving the elastic periods for the wall and for the frame 
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(acting, not design), and determining ground motion 
intensity factors when the wall starts to rock and at the 
maximum ground-shaking. Since the rocking resistance 
of the wall determines the maximum moment force it 
can take, while increases in building lateral shear force 
will still be taken almost entirely by the wall near its 
base, the distribution of shear up the wall must be the 
variable. The frame will start to pick up a portion of the 
lateral force in the upper part of the building. The build
ing flexibility and period will gradually move from that 
of the shear wall to that of the frame as more of the 
lateral force shear is dumped oflf to the frame due to 
rocking of the wall. It can be seen that the building flexi
bility was still low at maximum ground-shaking, but the 
maximum ground motion intensity factor was also low. 
If the maximum ground motion intensity factor was as 
great as the other two buildings, the Seismic Drift Index 
would have been high for the non-ductile, low lateral 
strength frame and serious damage may have occurred. 

84-ft-high Shear Wall Building—There were no accelero-
graphs in this building, so that the dynamic performance 
of the building during the San Fernando earthquake is 
not known in detail. However, the physical performance 
correlates with an inelastic analysis similar to that made 
for the instrumented shear wall building. The important 
point is that the performance for greater ground motion 
intensity factors than that to which the building has been 
subjected can be estimated on the basis of projected 
distortions for the greater motions. 

FLEXIBILITY CALCULATIONS 

The dynamic flexibility should be determined for all 
buildings which may be subjected to strong earthquake 
forces. An elastic Dynamic Flexibility Index is all that 
is needed for Ductile Moment Frame buildings. Shear 
Wall and Braced Frame buildings generally have two 
stages of flexibility, that before rocking moment resistance 
capacity is reached and that after the wall or braced 
frame starts to rock. The upper level of lateral force for 
which the flexibility is determined should be based on 
the response to real possible ground motion intensities, 
not code factored-down static forces. 

For Ductile Moment Frames, the following drift 
components need to be considered in the flexibility calcu
lations : 

1. Girder and column bending 
2. Girder and column shear 
3. Joint panel zone bending and shear 
4. Building chord drift due to rocking moment axial 

forces 

Generally, consideration of girder and column bend
ing on a frame center line basis will reasonably approxi
mate the drift obtained using clear span bending plus 

panel zone contributions. For unusual member length-
to-depth proportions, this should be checked. Building 
chord drift is not usually significant for frame aspect 
ratios less than 1 or 2. For preliminary design calculations 
and for simple building flexibility checks, the flexibility 
can often be determined with sufficient accuracy using 
portal shear distribution assumptions and checking a 
single typical bay at a few stories. Simplified chord drift 
calculations should be made if the frame aspect ratio is 
greater than 1 or 2. 

For buildings with shear walls or braced frames, the 
elastic flexibility and the rocking moment resistance of 
the walls or braced frames should be determined. In 
addition, the flexibility of the frames that will be dis
torted if the wall or braced frame starts to rock should 
be determined. Shear transfer to the frame at the maxi
mum credible ground motion intensity should then be 
estimated on a rational, simple, if not a detailed, basis. 
Finally, both the capacity of the frame to resist the shear 
transferred to it and the Dynamic Flexibility Index at this 
most critical stage should be computed. 

STORY DRIFT CONTROL VS. AVERAGE DRIFT CONTROL 

The Dynamic Flexibility Index, as noted, represents the 
average dynamic flexibility for the full building height. 
To control building dynamic response, as well as to 
control local damage, the excess of any story dynamic 
flexibility over the average flexibility needs limiting. As 
for the computation of the average flexibility, the assumed 
distribution of seismic forces up through the building 
should generally be on a static triangular basis, with the 
maximum force factor at the roof. Local story dynamic 
flexibilities computed for this force distribution should 
probably be held to not more than 2 5 % above the 
average building dynamic flexibility. It should be recog
nized, however, that this degree of uniformity in dynamic 
flexibility does not insure an equal uniformity in drift 
from actual earthquake ground motion response. The 
unique combining of modal responses for some earth
quakes may cause local story drifts to exceed the average 
building drift by a factor on the order of 2, even with the 
building uniformity suggested. This should be considered 
when evaluating drift criteria. 

CONCLUSIONS 

Because building drift coefficients have been locked in 
with building dynamic response to many different earth
quake ground motions and many opinions about prob
able, credible, and possible ground motions, this very 
important index of building seismic performance has been 
difficult to evaluate and standardize. It is suggested that 
the known part of the drift problem, the building flexi
bility and weight, be separated out into a Dynamic 
Flexibility Index. In order to compare buildings of 
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different heights in relation to their dynamic response, 
which also varies with height, a Seismic Drift Index is 
suggested. 

A number of representative buildings have been 
analyzed for these indexes. These buildings show some 
indication of the practical index limits and set the stage 
for standardizing flexibility evaluation and criteria. 
Continued use of standardized evaluation indexes should 
provide a clearer picture of the practical limits involved 
and a ready means of evaluating performance on an 
equal comparative basis. 

Guide criteria can be established in relation to 
building type, height, and occupancy. This may indicate 
that for certain building heights and occupancies, only 
certain types of structural systems will be practical. This 
is a better way of dictating systems than any generalized 
or arbitrary criteria. 

With standardized drift evaluation related to practical 
limits, researchers can be provided with testing distortion 
limits. The areas of concern can be limited so that the 
significant aspects of the earthquake problem can receive 
more attention. 

Advances in seismic design are seriously hampered 
by the lack of limits to the definition of the problem, 
often because too much emphasis is placed on academic 
accuracy in an area where the forces are so unpredictable 
that limits have more meaning than exactness. It is 
hoped that the indexing system proposed here will lead 
to better evaluation of seismic performance and thence 
to better seismic solutions. 

CO = ^X/m, where X = stiffness and m = mass 

/ = 00/2T 

T = 1/f = 27r/a; = Iw'Slm/X 

Expressing mass as W/g and stiffness as F/A (force 
over deflection), 

T = lir^WA/gF 

This is the formula for a single-degree of freedom (SDF) 
system. An SDF system has one lumped mass and can be 
represented by a single weight mounted on top of a 
slender vertical cantilever rod. This system will have a 
period of vibration dependent on the stiffness of the rod 
and the size of the weight on top. A series of such rods, 
of different height but with the same rod section and top 
weight size, will illustrate a spectrum of periods, because 
the stiffnesses will vary with the length of the rod. A 
structure wath several lumped masses is a multi-degree of 
freedom (MDF) system and its vibration will be a com
bination of the vibrations due to the several lumped 
masses. There will be as many modes of vibration as there 
are lumped masses. Each mode has its own period and 
can be represented by an SDF system of the same period. 

Approximate formulas for the first or fundamental 
mode of vibration of structures are set up in the code. 
For shear wall buildings the code formula is about as 
accurate as can be developed for this highly variable 
type of building. For moment frame buildings the code 
formula is not a good approximation for a wide range 
of buildings. 

APPENDIX A 

SEISMIC DESIGN TERMINOLOGY 

The key to understanding any subject is the knowledge 
of the vocabulary involved. The following general 
definitions of the terms used in seismic design are pre
sented as an aid to understanding seismic design. Sim
plicity and clarity are given precedence over exactitude 
in these definitions. 

Building Periods—Every structure will vibrate in ac
cordance with the laws of harmonic motion as deter
mined by its own dynamic characteristics. The dynamic 
characteristics are a function of its weight and stiiTness. 
A building's response to the motion of its base is deter
mined by those dynamic characteristics. 

The period of vibration, 7", is the time necessary to 
complete one cycle of oscillation and is the reciprocal of 
the natural frequency of vibration, / . The natural frequency 
is equal to the circular frequency, w, divided by l-w. The 
circular frequency of a single degree of freedom structure 
is proportional to the square root of the stiffness divided 
by the mass. The equations are: 

Response Spectra—The vibration of an SDF system due 
to a continuously varying base motion will, at any time, 
be the summation of the effects of the base motion im
pulses to that time. The maximum vibration reached 
during any length of time after the base motion starts is 
its spectral (maximum) value. If a series of SDF systems 
is subjected to the same base motion, there will be a series 
of maximum values related to SDF system periods, which 
will form a spectral curve. Thus, any given irregular 
motion will produce an individual response curve or 
response spectrum. Knowing the base motion and the 
SDF period, the maximum vibration can be picked off 
the appropriate curve, measured in terms of acceleration, 
velocity, or displacement. 

For M D F systems this information cannot be used 
directly. Even when the period of vibration for each 
mode is determined, it is still necessary to know the 
relative participation of each mode toward the total 
vibration. Reasonable approximations of this can be 
determined but, since each mode vibrates independently 
with time, the maximums are not reached at the same 
time. Other approximations have to be made to account 
for this. The SDF spectra, though representing a great 
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advance in seismic design, have therefore still been only 
a general indicator for M D F systems. 

If a typical relation between the periods of the modes 
of vibration is assumed, based on typical building stiffness 
and weight distribution, the computer can run the re
sponse of all modes simultaneously, and algebraically 
add them at each point in time. The maximum for the 
algebraic sum over the entire time history of the base 
motion can therefore be plotted in relation to the first 
mode period of M D F systems. This is a true M D F spec
tral response for a building whose dynamic characteris
tics fit the assumptions noted, a very useful seismic design 
tool. 

Damping—A perfectly elastic system, set into vibratory 
motion, would continue to vibrate forever if the vibra
tion were not stopped by an outside force. However, no 
system is perfectly elastic, and the vibratory motion will 
die out due to loss of energy resulting from internal 
strains. This loss of energy is called damping. Damping 
is generally expressed as a percentage of "critical damp
ing," the damping which would stop the vibratory 
motion in one swing after free vibration starts. The first 
small percentages of damping greatly reduce peak 
responses, because peak responses are generally associated 
with short time durations and therefore involve little 
energy. Damping represents energy losses from many 
factors and therefore can be of a number of types as 
related to vibration. This is a highly complex subject, but 
recent earthquake analyses indicate that relatively simple 
assumptions give good results. Most building response 
calculations are based on an assumed viscous damping 
for all modes of vibration. 

Base Shear—This is the total horizontal seismic shear 
at the base of a structure and is a function of the ac
celeration of each of the masses of the structure relative 
to the base, the effects added algebraically at any instant. 
For a static design the base shear is determined as an 
assumed relative acceleration times the total mass of the 
structure. 

Shear Distribution—The deflected shape of a structure 
for any single mode of vibration is always the same for 
that structure, regardless of the magnitude of the vibra
tion. In other words, though the amplitude of the dis
placement changes with time, the relation between dis
placements throughout the height remains constant. The 
distribution of accelerations for a single mode of vibration 
therefore remains constant. If a building is assumed to 
vibrate in a single mode, with the deflection curve a 
straight line (uniform drift), the amplitude of vibration 
is proportional to the height. The shear will then vary 
linearly from zero at the base to a maximum at the top. 
The code triangular distribution of shear is based on this 

^ 

Load ing Diagram Shea r Diagram 

Figure 2 

general assumption. Some confusion enters here because 
the word shear is used to represent a force at a floor and 
also the sum of the forces down to that floor. The tri
angular loading pattern and the shape of the building 
shear envelope due to that loading are, of course, very 
different (see Fig. 2). 

The triangular loading is sometimes spoken of as 
' ' throwing weight to the top." Obviously this is not true. 
It is a matter of assuming higher accelerations at the top. 
Actually, for most buildings of any significant height-to-
width ratio, the acceleration varies more than linearly 
due to the effect of the higher modes. Statistically this 
can be represented simply by placing a portion of the 
total base shear at the roof and distributing the rest 
triangularly. 

Rocking Moment (Overturning Moment)—The rock
ing moment is the algebraic sum of the moments of all 
the forces above the base multiplied by their heights 
above the base. If the forces are represented by an en
velope of maximums reached at different times, the rock
ing moments will be overestimated. However, they are 
not greatly overestimated, since the first mode is domin-
nant for these moments and the forces for the first mode 
do all reach an algebraic maximum at the same time. 

It should be recognized that rocking moments are 
almost never a threat to overturn buildings because the 
transitory nature of the loading does not allow time 
enough for the building to move past its center of rota
tion. However, this type of relief is not assumed to help 
much in regard to the generation of axial forces in 
columns. 

Story Drift Coefficient—The story drift coefficient is 
the ratio of inter-story horizontal displacement to story 
height, usually expressed as a percent. Thus, for a 12 ft 
(144 in.) story height a 1 % drift coefficient is a very 
important quantity, becoming constantly more important 
as an indicator of building stiffness, and a measure of 
hinge rotation demand and PA effects. 

Ductility—Present measures of ductility are confused. 
Energy capacity demands of earthquakes are measured 
in terms of force times displacement, leading to a ductility 
measure defined as the ratio of yield level horizontal 
displacement to the displacement required to meet a 
given energy demand. A more significant measure, as 
far as member and joint performance, is the ratio between 
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the yield point strain for each of those elements and the 
maximum demand strain. If the element (joint or mem
ber) which develops a plastic hinge contributes only 
2 0 % of the horizontal drift, then a ductility factor of 2 
by the first definition requires a ductility factor of 10 
by the second definition. 

I t seems that the significant factor in determining the 
inelastic capacity limit of a member or joint is the actual 
rotation demand^ not the ratio between elastic and inelastic. 
From test frames we can evaluate the potential for real 
failure if we know the hinge rotation demand. For 
instance, a 1 % rotation will show little distress in either 
a concrete or a steel member or joint. If we deduct the 
drift to yield from the total drift demand, we get the 
yield rotation demand for whatever element develops a 
plastic hinge. This is defined by the demand drift co
efficient less the yield point drift coefficient, since all of 
the yield drift results from joint rotation. The drift 
coefficient measures the joint rotation in radians because 
it measures the tangent of a very small angle. Thus, a 
drift coefficient demand of 1% indicates a plastic hinge 
rotation demand of 0.57 degrees if the elastic portion of 
the drift is neglected. If the elastic portion of the drift 
coefficient were 0.5%, the plastic rotation demand would 
be only 0.29 degrees. 

Drift coefficients give our best measure of the actual 
ductility demands since they measure strain demands 
which we can relate to test data. 

Elastic Response—Most of our present dynamic com
puter building analyses are run on elastic response pro
grams, that is, the frames are assumed to remain elastic, 
with stress and strain proportionality constant. These 
programs input a base motion and record the changing 
distortion of the building during the duration of the 
motion, and the associated building forces and motions 
involved. When the forces generated are greater than 
the elastic capacity of the structural frame, the results of 
an elastic analysis are not directly applicable. However, 
because of the complexities involved in an inelastic 
dynamic analysis, most computer programs so far de
veloped for inelastic response are restricted to single 
frames. Comparisons of inelastic response to elastic 
response for these simple frames indicate that the most 
important factor, frame distortion, is generally predicted 
with reasonable accuracy by an elastic analysis, though 
the frame is fon^ed past the elastic range. 

Most of the measures of motion developed by the 
computer analysis are relative to the base motion. I t is 
relative motion that is involved with vertical frames. The 
motion which is significant for horizontal diaphragms 
and bracing and for the things supported on floors or 
roofs is the absolute motion, that is, motion related only 
to their original stationary condition. Dynamic computer 
programs develop the absolute motion at all levels. Since 

the absolute motion at any level becomes the base motion 
for all of the structure above that level, this is very useful 
information. Spectral responses for this motion can be 
developed to evaluate its eff̂ ect on the structure above, 
the floor or roof itself, and things supported on the floor 
or roof. 

Inelastic Response—All of the above definitions per
tain to, or are related to, elastic response derived by 
assuming a constant modulus of elasticity. While portions 
of a frame exceed the yield point (approximate propor
tionality limit), the stiff'ness of the frame is changing and 
the problem of dynamic analyses becomes much more 
complex. To solve even small inelastic problems, the 
modulus of elasticity must be assumed to change accord
ing to some simple curve. The curve may be assumed 
(1) elastoplastic, i.e., the modulus suddenly becomes zero 
when the stress is above yield stress, (2) bilinear, i.e., the 
modulus suddenly reduces to a small quanti ty when the 
stress is above yield stress, or (3) a Ramberg 0sgood inncxion, 
i.e., the modulus gradually falls off near and above the 
yield stress. 

The Ramberg Osgood function closely represents 
the plots of load vs. strain for test members loaded grad
ually from zero up to yield point and into the inelastic 
range. This type of test loading, called ' 'monotonic," is 
the only test loading applied for usual structural design 
data. For seismic design, the load is applied in one direc
tion until a given strain is reached, and then the load is 
reversed to a strain in the opposite direction. The loading 
is then cycled to determine an energy loop and to deter
mine if the energy loop is stable or deteriorating. The 
area under the curve (within the loop) does represent 
energy absorption because it represents force times 
distance. See Fig. 3. If the plots for reverse loading cycles 
follow the first cycle plot closely, the stiffness and capacity 
of the test specimen is not deteriorating with load rever
sals. If the slope of the loop decreases, the stiffness is 
deteriorating. If the maximum ordinate decreases, the 
capacity is deteriorating. 

Elastic systems, and the elastic portion of inelastic 
systems, depend on storing the energy input to the build
ing when the base is moved in one direction, and then 
releasing the energy during reverse motions. Inelastic 
systems absorb the energy in plastic hinge action. The 

Stress 

Strain 

Fig. 3. Ramberg Osgood energy loop 
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energy loop for plastic hinges in ductile frames can pro
vide the required energy absorption. 

Many non-structural elements will also absorb energy. 
This is cited not only as the reason why low capacity 
frames survive earthquakes, but also as justification for 
underdesigning structural frames. I t does not seem either 
necessary or prudent to rely on this undependable type 
of resistance. It seems that we can provide all of the 
energy absorbing capacity needed to survive earth
quakes in properly designed structural frames. 

PA Effects and Instability—When a frame sways, 
a vertical load rocking moment develops which is given 
by the equation M = PA. If this moment ever increased 
faster than the restoring force from the frame stiffness, 
instability would occur. For the vertical load problem 
which is the concern of low earthquake risk areas, any 
instability threat is involved with very flexible frames. 
For these frames, if the frame is not stayed against side-
sway and the load is continuously increased, the frame 
will eventually buckle out from under the load. In other 
words, the P/A stresses plus the bending stress due to PA 
will reach yield, and, since the load is constant, sidesway 
will continue until failure. The force necessary to stay 
the frame against sidesway is very small, the stiffness 
generally being the critical factor. For vertical load sta
bility some nominal X-bracing or shear walls will pro
vide the stiffness and strength needed for staying. If no 
X-bracing or shear walls are feasible, the design axial 
stress is kept low on the basis of some very arbitrary 
column and joint stiffness factors; these factors involve a 
lot of design work and do not lead to rational design. 

For frames designed to large lateral forces with con
trolled drift, the arbitrary columns strength reduction 
factors specified by codes for unbraced frames should 
not apply. 

Real problems of instability due to P^ effects in 
seismic frames are few, and are connected only with 
large forces which would cause inelastic response. Defini
tion of inelastic instability problems of SDF systems have 
now been developed in terms of time and intensity of 
base motion, elastic strength, and stiffness. For M D F 
systems simple definition is probably not possible and 
only an inelastic dynamic analysis will identify problems. 
However, there is no indication that any problem will 
exist for structures with relatively uniformly distributed 
mass and stiffness. 

Earthquake Ground Motions—It is useful to define 
three levels of earthquake ground motion in regard to 
seismic design: 

Probable Maximum Earthquake Motion—This represents the 
general level of intensity which it is believed can be as
sociated with significant probability. This means that there 

is enough probability of this intensity of motion to require 
the design of a structural frame whose response to that 
motion will be very predictably adequate. Considering 
the risks involved, this probability does not need to be 
very great. 

Maximum Credible Earthquake Motion—This represents the 
maximum motion intensity which can be predicted as 
credible according to presently available data and theory. 
A structural frame should be able to survive this motion 
with reasonable predictability. Predictability is, of course, 
a matter of how far we extend our predictions based on 
presently available dynamic analytical data and physical 
test analogies. 

Maximum Possible Earthquake Motion—No one can say 
positively what maximum possibilities exist beyond our 
current theory and knowledge. It is assumed that frame 
capacity above that which is reasonably predictable will 
go a long way toward insuring a building's survival for 
motion intensities beyond those which are considered 
really credible. 

The intensity of motion represented by all earthquake 
motion records obtained up to this time is, of course, less 
than the ' 'maximum credible" value. Gal Tech has 
added to these records a series of simulated records based 
on theory as an aid in more fully defining credible ground 
motions. 

Maximum Capacity—We need new definitions for maxi
mum capacity, ultimate capacity, failure, etc. Common 
usage has led to thinking of these terms as a limiting con
dition in regard to collapse. In most cases these terms 
really mean a limit to some certain condition such as 
stress-strain linear proportionality. Safety factor working 
stress design is based on keeping the stress at working 
loads below some given safe percentage of these arbitrary 
.limiting conditions. Design in general is working away 
from this somewhat irrational approach, and seismic 
design in particular cannot afford it. We have to estab
lish new upper limits. Until this is done on a general 
basis, we will have to do the best we can toward convert
ing working stress values to capacity limits. This is par
ticularly difficult for bolt values, weld values, and some 
stresses such as shear. Our assumptions must be rational 
if we are to achieve rational and practical seismic designs. 

We need also to consider the capacity of a frame in 
terms of the full capacity of all of the members which 
must reach full plastic yielding before the maximum 
lateral capacity of the frame is reached. For example, if 
the columns in a story are critical to story shear, the 
story shear capacity is not reached when one portion of 
one column cross section reaches yield stress. Tha t is the 
point of incipient yielding, but the full frame yield ca
pacity is not reached until a full plastic hinge forms at 
the top and bottom of every column in the story. 
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