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ANALYSIS AND DESIGN of common types of buildings to 

resist earthquake forces is done by the method described 
in the Uniform Building Code. Approximate formulas for 
natural periods of fundamental mode of buildings are 
available and are used in the static method of aseismic 
design of Uniform Building Code. However, some build
ing codes in the seismic regions require dynamic analysis 
of tall buildings and other important structures. The 
dynamic analysis of multistory structures is laborious 
and time consuming because of the many degrees of 
freedom involved. Modern electronic computers have 
made possible the dynamic analysis of multi-degree 
freedom systems which was prohibitive by hand calcu
lations. However, when the number of degrees of freedom 
is large, the dynamic analysis requires the use of digital 
computers of large capacities and the computer time 
used can be very expensive. In the modal method of 
dynamic analysis, the natural periods and mode shapes 
for various modes of vibrations are determined by com
puter analysis. The objective in this paper is to develop 
simplified methods for determining natural periods of 
vibrations of multistory buildings so that expensive 
computer time is kept to a minimum. Since the aseismic 
design by dynamic analysis require a few preliminary 
trials before final satisfactory design is achieved, the 
simplified methods can save laborious computer calcu
lations in the preliminary design. The simplified meth
ods discussed in this paper are developed using the con
cept of an elastic shear wave equation in solid uniform 
bars. A numerical example is presented to compare the 
simplified methods with the more rigorous analysis. 

METHODS BASED ON SHEAR WAVE EQUATION 

Consider first the case of vibrations of tall buildings as
suming no rotation and translation of the foundation. 
A tall building with fixed base is similar to a cantilever 
bar as regards its vibration characteristics. The horizon
tal deflection of the building during vibrations consists 
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of shear-type deformations, flexural deformations, and 
deformations due to joint rotations. The theory of vibra
tions of uniform prismatic shear and flexural beams can 
be used to develop simplified formulas for natural pe
riods of multistory buildings. 

SHEAR BUILDINGS 

Consider first the vibrations of a uniform cantilever shear 
beam (Fig. 1). Let 

L = length of cantilever beam 
G = modulus of rigidity of material of shear 

beam 
7*1, 7̂ 2, Tz — natural periods in first, second and 

third modes of vibrations 
a = velocity of shear wave in the beam 
7 = unit weight of material of beam 
Xi, X2, X3 = wave lengths of elastic shear wave in 

first three modes 

The cantilever shear beam has infinite degrees of 
freedom. In the dynamic analysis of buildings, only 
first, second, and third modes are of importance, which 
are considered here. 
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' î 

77777t 

~T 
1 

/ 
^ 

\ 
\ 
J 

/ 
/ 

7777-

1st MODE 2nd MODE 3rd MODE 

Fig. 1 Transverse vibrations of a cantilever shear beam; shapes of 
first three natural modes of vibration 
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From the theory of propagation of an elastic shear 
wave in long bars, the velocity of the shear wave is given 
by 

a — 
Gg 

7 
(1) 

The vibrations of the cantilever beam constitute a sta
tionary wave. The natural periods of vibration of the 
shear beam in the first three modes are given by: 

a 

a 

7^3 = ^-^ 

(2) 

(3) 

(4) 

For vibrations in the i"" mode, the wave length is given by 

4L 
\ i 

{2i - 1) 
(5) 

The natural periods for the first three modes are there
fore given by 

a 

A L 
T, = 

A L 

D a 

(6) 

(7) 

(8) 

Since L/a is the time taken by the shear wave to 
travel from base to the top of the cantilever, Eqs. (6), 
(7), and (8) can be used to determine the natural 
periods of multistory buildings. 

The building mass may be assumed to be concen
trated at each floor and roof level. Now consider a 
multistory shear building (Fig. 2). For simplicity, first 
assume all stories of equal height and with the same stiff
ness and equal masses. Let 

n = number of stories 
h — height of each story 
m = mass at each floor level and roof 
L = total height of the building 
k = stiffness of each story 

When the number of stories of the building is large, 
the periods and mode shapes of the building are the 
same as an equivalent uniform catnilever bar having the 
same uniform rigidity as the building. 

The expression for the velocity of shear wave along 
the height of the building can be deduced in terms of 
story mass, height, and stiffness. 
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Fig. 2. Fixed base multistory shear building 

Let 

P = story shear 
A — cross-sectional area of the building in plan 
A = relative story deflection due to shear 
7g = unit weight of a dynamically equivalent solid 

uniform bar having the same vibrational char
acteristics as the building 

Ge — modulus of rigidity or shear modulus of mate
rial of a solid uniform bar which is dynam
ically equivalent to the shear building 

(3g = velocity of shear wave in the building 

Referring to Fig. 3, modulus of rigidity Ge is given by: 

P/A _ Ph 

A/A ~ ZZ a = (9) 

Unit weight 7^ is given by: 

7e = 
rng 
Ah 

(10) 

SHEAR 

P L A N AREA 'A' -

Fig. 3. Story shear and relative story deflection 
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(12) 

The velocity of shear wave along the building is given by 

(11) 

Substituting Eqs. (9) and (10) in Eq. (11) gives: 

a, = h\-

But P/A = story stiffness k. 

Substituting P/A = A: in Eq. (12) gives: 

ae = h \ - (13) 

The natural periods of vibrations of the building are 
given by using Eqs. (6), (7), and (8). Thus, for the first 
three modes: 

- - f n 
T, i 4L im 

3 h ^k 

(14) 

(15) 

(16) 

Consider now the case of a shear building with stories 
having different heights, masses, and stiffnesses. Let 

hi — height of z*̂  story 
ki = stiffness of i^^ story 
rrii = mass of z*̂  story 
df = shear wave velocity at i^^ story level 

Thus 

(17) 

Time taken by shear wave to travel distance hi is given 
by 

hi ^ J^ 
(18) 

Travel time of shear wave from base of building to top is 
given by 

i = i di i = i ' ki 
(19) 

Using the analogy of shear beam and Eqs. (6), (7), and 
(8), the periods of first three modes of vibrations are ap
proximately given by: 

T, 
1 = 1 ^ ki 

3 i = 1 ^ ki 

(20) 

(21) 

(22) 

Since Eqs. (20), (21), and (22) are derived by first con
sidering an equivalent uniform shear beam, these will 
give exact values if all stories have equal masses and 
stiffnesses and will give fair approximations when story 
masses and stiffnesses are different. 

FLEXURAL DEFLECTION 

In the vibrations of tall buildings, the horizontal deflec
tions are partly shear type and partly flexural type. It 
can be shown that Eqs. (20), (21), and (22) derived for 
shear buildings can also be applicable when deflections 
are due to combined shear and flexure. In this case the 
story stiffness k is equal to the story shear divided by 
relative horizontal story deflection due to both shear and 
flexure. 

Consider first transverse vibrations of a uniform 
cantilever flexural beam with negligible shear deforma
tion (Fig. 4). Let 

/ = moment of inertia of uniform beam section 
E = Young's modulus of material of the beam 
fx = mass per unit length of the beam 
L = length of beam 
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Fig. 4. Cantilever flexural building 
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From any textbook on structural dynamicSj it is found 
that the natural period of first mode of transverse vibra
tions of the cantilever beam is given by: 

T i = 1.78L2 (23) 

Consider this uniform beam to represent an ideal case of 
a multistory building have very rigid shear walls such 
that horizontal deflections of the building are of flexural 
type only and shear-type deflections are negligible. 
Also as an ideal case, assume all stories are of equal 
heights and have equal masses. 

Consider the deflected shape of cantilever beam due 
to a horizontal force P at the top. Let 

X — height above base of the i^^ story 
V = horizontal deflection at the z*̂  story from initial 

vertical position 
dx = height of each story 
rUi = mass of the z*̂  story 
Â - = relative deflection of i^^ story with respect to 

{i — ly^ story 
ki = stiffness of i^^ story as defined for flexural-type 

deformation 
n = total number of stories 

The equation of the deflected shape is given by 

y 
Px^ 

3EI 
(24) 

Differentiating Eq. (24), we get the slope of the deflec
tion curve: 

dy 

dx 

Px^ 

~EI 

Relative story deflection A^ = 

P 

Px^ 

(25) 

dx (26) 

Story stiffness ki 
A, 

EI 

x^dx 
(27) 

Applying the same reasoning as for a uniform shear 
beam representing a multistory shear building, let us 
assume that the natural period of first mode of the 
flexural building is given by: 

rrii 
(28) 

where Q is a constant to be evaluated. 
For a uniform building of equal story heights and equal 

story masses; 

\xdx (29) 

From Eqs. (27) and (29): 

(30) 

By summation over the full height of the building: 

i = ^^k, J o ^EI 2 ^E. 

Therefore, 

D 

^''«r^E, 4\ 

(31) 

(32) 

The exact value of T\ is given by Eq. (23). 
Hence, from Eqs. (23) and (32) we can evaluate the 

constant Q which is found to be 3.56. 
Therefore, for a multistory building with flexural-

type deformation, the natural period of first mode of vi
bration is given by: 

Ti = 3.56 E \ ^ 
i = 1 ^ ki 

(33) 

If the deflections in a tall building are partly of shear 
type and partly flexural type, which is the case in actual 
buildings, the natural period of first mode of vibration is 
given by: 

^1 = Q ' E , , V-
T I 

(34) 

where QMs a constant, its value lying between 3.56 and 
4.0. 

Assuming deflections are 50 percent shear type and 
50 percent flexural type, we have, by taking the average 
of Eqs. (20) and (33): 

Ti = 
(4.0 + 3.56) 

tV?-3.78EV7 
1 = 1 ' A:,- 1 = 1 ' A 

For practical purposes, 

i=\ ^ ki i (36) 

DEFLECTION DUE TO JOINT ROTATION 

In multistory buildings there is additional horizontal 
deflection due to joint rotations. This additional deflec
tion is comprised of both shear-type deformation and 
flexural deformation. The period of fundamental mode 
is fairly closely given by: 

r. = 4 E V-' 
i=l ^ ki 

(37) 

where ki is the story stiffness for deformation due to all 
causes, i.e., shear, flexure, and joint rotation. 
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Fig. 5. Six-story shear building 

The natural periods of 2nd and 3rd modes are ap
proximately given by: 

(38) 

(39) 

The story stiffness ki is obtained by applying an arbitrary 
horizontal shear P at the top of the building and de
termining relative horizontal deflections A^ of adjacent 
stories. The mass and stiffness of all non-structural ele
ments should be included to determine m^ and kf. 

FOUNDATION ROTATION AND TRANSLATION: 

The simplified formulas for natural periods of multistory 
buildings are applicable when there is practically no 
rotation and translation of the foundation during vibra
tions. However, due to ground yielding there will be 
both rotation and translation of the foundation. The 
natural periods will be higher than those given by Eqs. 
(37), (38), and (39). For practical purposes, it is con
servative to assume full fixity of the base of building. 
But if the field investigation of the foundation material 
indicate appreciable rotation and translation of the 
foundation, the fundamental periods due to foundation 
rotation and translation can be determined separately 
from the knowledge of soil properties, building mass and 

mass moment of inertia. These periods can be combined 
with the fundamental period obtained from Eq. (37) by 
the Southwell-Dunkerley equation, which states that the 
sum of squares of the natural periods of isolated systems 
is approximately equal to the square of the natural period 
of the combined system. 

NUMERICAL EXAMPLE 

The usefulness of the simplified methods developed in 
this paper is illustrated by their application to a numeri
cal example. The example chosen is a six-story shear 
building. The solution of the example problem by more 
rigorous methods is given on pages 414-415 of Ref. 5. 

Example: (Fig. 5) 

A six-story shear building with fully-fixed foundation 
has story masses from top down equal to 5m, 6m, 7m, 
8m, 9m, and 10m. The shear rigidities between stories are 
equal to 5k, 6k, Ik, 8A:, 9k, and lOA:. 

Find the first and second mode natural frequencies of 
the building. 

Using Eqs (20) and (21): 

First mode period T, = 4 ( V — + V - + V " + 
^ K^lOk ^9k ^Sk 

V— + V— + V—^ 
^7k ^6k ^5kJ 

= 2 4 V ^ i 
2'K 2Tr \k Ik 

Circular frequency coi = — = — \— = 0.262 'W— Ti 24 

radians/sec. 

24 \m \rt 
Second mode period Ti = T~'V" = 8 'W-

27r Ik L 
Circular frequency co2 = — ' W - = 0.785 "W-

8 ' m ^7 

seconds 

k 

m 

radians/sec. 

The solution by rigorous methods in Ref. 5 gives the fol
lowing circular frequencies: 

V-coi = 0.276 "W- and co2 = 0.71 \~ radians/sec. 
' m 'm 

CONCLUSIONS 

The simplified methods for determining natural periods 
of vibrations of multistory buildings presented in this 
paper can be used in earthquake resistant design or for 
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design to resist blast and shock loading. Also, these are 
useful for vibrational analysis of buildings and structures 
supporting unbalanced rotating machinery. Because of 
the simple calculations involved, these approximate 
methods can be easily programmed for a digital com
puter, thus keeping expensive computer time to a mini
mum. The numerical example checks the accuracy of 
the simplified formulas. These are found to be sufficiently 
accurate for practical purposes. They are more accurate 
for the first mode of vibration and only approximate for 
the second and third modes. 
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