Steel Column Base Plate Design

BALBIR S. SANDHU

THE DESIGN OF base plates of columns in steel frame buildings is simple but time consuming. The AISC Manual of Steel Construction contains tables of base plate sizes and thickness for maximum loads on columns of short lengths. However, in actual practice the column loads for various column sizes are seldom maximum as tabulated in the AISC Manual. Therefore, the size and thickness of base plate have to be calculated following the procedure given on pg. 3-95 of the AISC Manual of Steel Construction, 7th Edition. The writer has developed an alignment chart for the design of base plates of axially loaded columns using the AISC method.

The plate thickness t, in inches, is given by the larger value of the following:

 $t = \sqrt{\frac{3F_p n^2}{F_p}}$

$$t = \sqrt{\frac{3F_p m^2}{F_b}} \tag{1}$$

(2)

or

where

$$F_{p} = \text{allowable concrete bearing pressure, psi}$$

$$F_{b} = \text{allowable plate bending stress, psi}$$

$$m = \frac{(L - 0.95d)}{2}$$

$$n = \frac{(B - 0.8b)}{2}$$

$$L = \text{base plate length, in.}$$

B = base plate width, in.

$$d = \text{column depth, in.}$$

b = column flange width, in.

For economical design, the dimensions of a base plate should be such that m and n are approximately equal. If base plate dimensions are so chosen that m is slightly larger than n, Eq. (1) will always control the plate thickness.

Balbir S. Sandhu is Structural Engineer, Burns & McDonnell Engineering Company, Kansas City, Missouri. From the AISC Specification Sect. 1.5.5:

 $F_p = 0.25 f'_c$ on full area of concrete support

 $F_p = 0.375 f'_c$ on loaded concrete area equal to onethird or less of the total concrete support area

Also, from AISC Specification Sect. 1.5.1.4.3:

$$F_{b} = 0.75F_{y}$$

where f_c and F_y are compressive strength of concrete and yield stress of steel, respectively.

Substituting the values of F_p , F_b and m in Eq. (1), the plate thickness is given as:

On full support area:
$$t = \frac{(L - 0.95d)}{6} \sqrt{\frac{9f'_c}{F_y}}$$
 (3)

On one third or less of support area:

$$t = 1.225 \ \frac{(L - 0.95d)}{6} \ \sqrt{\frac{9f'_c}{F_y}} \tag{4}$$

The alignment chart is drawn for:

$$f'_c = 4000 \text{ psi}$$

 $F_y = 36000 \text{ psi}$

Substituting these values in Eqs. (3) and (4):

On full support area:
$$t = \frac{(L - 0.95d)}{6}$$
 (5)

On one-third or less of support area:

$$t = 1.225 \ \frac{(L - 0.95d)}{6} \tag{6}$$

Equations (5) and (6) are linear in L, d and t. An alignment chart, Fig. 1, is drawn for a wide range of column loads and common column sections. The base plate width B and length L are so proportioned that (L - 0.95d) is always larger than (B - 0.8b) and therefore controls the design thickness.

The use of the alignment chart is illustrated by the following examples:

ALIGNMENT CHART						
llowable				COLUMN BASEPLATE DESIGN		
aseplate ad (kips)		Baser	olate 7e	Concrete Strength $f'_{c} = 4000 \text{ psi}$		
-	Fp=	Width	th Length Steel Yield Stress Fy = 36,000 psi			
r'c	-375f'c	B (in.)	L (in.)	Allowable Concrete Bearing Pressur	e:	
0	120	8	10	On full area $F_p = .25$ fc = 1000 psi		
ю	150	9	11	On one-third area or less F _p = .3	75 f′ _C = 1500 psi	
!O	180	10	12	-		
0	210	11	13	Plate Thickness t (in.)		
Ό	250	12	14	.95d	Column Size	
ю	270	12	15			
ю	280	12	16	-		
!0	330	13	17	- I		
i0	370	14	18	$F_{b} = .25f'_{c}$ $F_{b} = .375f'_{c}$ 18.0	– W 14 x 605, W 14 x 665, W 14 x 730	
30	420	15	19	- 0.5	- W 14 x 426, W 14 x 455, W 14 x 500, W 14 x 550	
20	480	16	20	- 0.5 - 0.75 17.0	– W 14 x 370, W 14 x 398	
30	540	17	21	75 - 1.0 16.5	- W 14 x 342	
ю	600	18	22	- 1.0	W 14 x 287, W 14 x 314, W 14 x 320	
10	660	19	23	- 1.25 - 1.5 15.5 -	– W 14 x 264	
30	720	20	24		– W 14 x 219, W 14 x 228, W 14 x 237, W 14 x 246	
20	780	21	25	- 1.75 - 2.25 14.5	– W 14 x 176, W 14 x 184, W 14 x 193, W 14 x 202, W 14 x 211	
70	850	22	26	2.0 2.5 14.0 _	– W 14 x 136, W 14 x 142, W 14 x 150, W 14 x 158, W 14 x 167	
20	930	23	27	- 2.25 - 2.75 13.5	– W 12 x 190, W 14 x 84, W 14 x 103, W 14 x 111, W 14 x 119, W 14 x 127	
70	1000	24	28	-2.5 -3.0 13.0 -3.25	– W 12 x 161, W 14 x 78, W 14 x 87, W 14 x 95	
20	1080	25	29	2.75 - 3.5 12.5	- W 12 x 133	
30	1170	26	30	- 3.0	_ W 12 x 92, W 12 x 99, W 12 x 106, W 12 x 120, W 14 x 61, W 14 x 68, W 14 x	
\$ 0	1260	27	31	- 3.25	– W 12 x 58, W 12 x 65, W 12 x 72, W 12 x 79, W 12 x 85	
00	1350	28	32	- 3.5 - 4.25 11.0	- W 12 x 53	
60	1440	29	33	- 3.75 - 4.5 10.5	- W 10 x 100, W 10 x 112	
20	1530	30	34	- 4.0	- W 10 x 72, W 10 x 77, W 10 x 89	
BO	1620	31	35	- 4.25 - 5.25 9.5	- W 10 x 45, W 10 x 49, W 10 x 54, W 10 x 60, W 10 x 66	
50	1730	32	36	- 4.5 - 5.5 9.0 -	- W 10 x 33, W 10 x 39	
20	1830	33	37	4.75	- W8×67	
90	1930	34	38	- 5.0	- W 8 x 48, W 8 x 58	
60	2040	35	39	6.5 7.5	- W 8 x 31, W 8 x 35, W 8 x 40	
40	2160	36	40	- 5.56.75 7.0 -	-	
20	2280	37	41	- 5.75 - 7.0 6.5 -	- B	
00	2400	38	42	F 6.0 6.0 -	- W 6 x 25	
80	2520	39	43	- 5.5 -	- W 6 x 15.5, W 6 x 20	
60	2640	40	44			
40	2760	41	45	1. Design Load = $(DL + LL)$ or .75 $(DL + LL + Wind L)$	Load), – P	
30	2890	42	46	whichever is greater.		
20	3030	43	47	2. Select baseplate size from table of allowable loads.		
10	3170	44	48	3. Align the length (L) of plate and the column size ar	nd t = Baseplate Thickness	
00	3300	45	49	read plate thickness (t) for appropriate concrete be	aring. Use minimum $t = \frac{3}{4}$ "	
00	3450	46	50			

Figure 1

Example 1:

Given: Design the base plate.

Column: W14×87 Axial load = 240 kips Concrete f_c = 4000 psi Allowable concrete bearing $F_p = 0.25f'_c$ Steel F_y = 36000 psi Full area of concrete support loaded.

Solution:

From the column of allowable loads on base plates, the plate dimensions are B = 14 in. and L = 18 in.

Align L = 18 in. and column size W14×87, and determine plate thickness t for $F_p = 0.25f'_c$, which is 1.0 in.

Base plate required is $14 \ge 1 \le 1'-6''$

The alignment chart can also be used for values of f'_{c} and F_{y} other than 4000 psi and 36000 psi, respectively, as in the following example.

Example 2:

Given:

Column $W14 \times 127$ Axial load = 400 kips

Loaded area of concrete support less than one-third of total support area, i.e.:

 $F_p = 0.375 f'_c$ Concrete $f'_c = 3000$ psi Steel $F_y = 42000$ psi

Solution:

The base plate dimensions can be determined using equivalent column load for concrete support of $f'_c = 4000$ psi and then multiplying the thickness *t* obtained from the alignment chart by the correction factor $\sqrt{9f'_c/F_y}$.

Equivalent load for 4000 psi concrete

$$= 400 \times \frac{4000}{3000} = 534 \text{ kips}$$

Base plate dimensions from table of allowable load for concrete bearing $F_p = 0.375 f'_c$ are:

$$B = 17.0$$
 in.
 $L = 21.0$ in.

From alignment chart t = 1.53 in.

Corrected thickness =
$$1.53 \sqrt{\frac{9 \times 3000}{42000}}$$

= $1.53 \ge 0.8 = 1.23$ in., say $1\frac{1}{4}$ in.

Hence, base plate required is 17 x $1\frac{1}{4}$ x 1'-9''.

The chart is applicable for bases with direct load only. The base plates with overturning moment or uplift due to seismic or wind load are to be specially designed.

For column sizes other than those shown on the alignment chart, the chart can still be used by proportioning the base plate length L and B such that (L - 0.95d) is larger than (B - 0.80b). Then align 0.95d of column and L to determine plate thickness t.