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IN THE FIELD of engineering design, it is normal to de
sign steel wide-flange columns as if they were loaded by 
direct compression or by a thrust with some eccentricity 
about only one of the principal axes. Only limited design 
information is available concerning the case where there 
exists, simultaneously, some eccentricity with respect to 
each of the major axes. Where careful consideration is 
given to the true loading on a wide-flange column, it is 
frequently found that the longitudinal thrust on most 
columns does have some eccentricity in both principal 
directions. Figure 1 illustrates this general loading situa
tion. 

The AISC Specification1 contains plastic design 
rules for axially loaded wide-flange columns with either 
no moment or with moment about only one principal 
axis. The design criteria for the ultimate load-carrying 
capacity of a biaxially loaded beam-column is obtained 
by an implied extension of Formulas (2.4-2) and (2.4-3). 
It has, therefore, been desirable for some time not only 
to predict the ultimate load-carrying capacity of a mem
ber loaded in this manner, but to provide additional 
design criteria for the selection of such members. 

This paper presents a design technique for determina
tion of the maximum plastic strength of biaxially loaded 
beam-columns. The loading situation is caused by a 
compressive force eccentric to each of the two principal 
axes. The eccentricities are not restricted in any way. 
The member is an open section, composed of prismatic 
elements, of the wide-flange class, in which no stress 
reversals occur. The material is assumed to be ideally 
elastic-perfectly plastic, but may contain residual stresses. 
The analytical procedure used to determine the ultimate 
load is based on an equilibrium technique in which the 
external forces acting on the cross section are equated 
to the internal resistances of that section as determined 
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by the distribution of longitudinal stresses. The procedure 
is iterative and non-incremental. The principles of the 
procedure are presented in this paper as well as the re
sults in the form of an interaction curve, design charts, 
and the equations of forces as used in the analytical 
procedure. 

EQUILIBRIUM APPROACH 

The non-incremental equilibrium approach was first 
presented with respect to biaxially-loaded beam-columns 
by Ringo16 in 1964 and later refined and extended by 
McDonough14 in their doctoral dissertations. The ap
proach applies to wide-flange members normally con
sidered to be column sections in the AISC Specification.1 

The equilibrium approach derives its name from the 
fact that the solutions are obtained by equating the in
ternal forces, both the compressive force and the mo
ments, to the external forces acting on the cross section. 

When given bending moments, as defined by a com
pressive load and its eccentricities, act on a beam-
column, the column with " length" will have less capac
ity for load than the same column section when it is 
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Fig. 7. Distribution of moments 
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fully braced. I t has, therefore, been customary to pro
vide two equations for design purposes. One applies to 
the entire member and includes the effects of length. The 
other applies to cross sections or members whose effects 
of length have been prevented or are otherwise negligible. 
It is to the latter case that the method of this paper ap
plies; that is, to the fully braced section. Because lateral-
torsional instability is prevented at the cross section 
which is fully braced, each fiber of the section may be 
longitudinally stressed to its yield point before the 
ability of the cross section to absorb loading has been 
exhausted. Figure 2 illustrates the distribution of mo
ments appropriate to this situation. 

It is for this particular loading configuration that 
the AISC adopted a formula to cover this problem in the 
uniaxial situation. It is Formula (2.4-3), which gives the 
maximum strength of a beam-column subjected to a 
compressive thrust eccentric from one principal axis only. 
This equation is: 

P M 
- H < 1.0 
Py 1ASMP -

where M < Mv. This interaction equation applies to one 
of two possible cases of beam-column behavior. The 
member is fully braced as defined by the limitations 
placed on the value of {l/r)max in Sect. 2.9, or the member 
may be under the action of forces which place it in 
double curvature. In the latter case, the critical forces 
and the formation of the plastic hinge, or its equivalent 
Mvc, occur at the ends of the member, rather than within 
its length. This paper extends the design capability to 
biaxial moment and applies to the same general situa
tion as does AISC Formula (2.4-3). 

The internal forces of resistance are first determined 
by a set of equilibrium equations. These equations are 
determined by sequentially setting positions of the neu
tral axis and, at the same time, assuming it to be a 

Fig. 2. Cross section and loading 

straight line. Such is not categorically the case, but the 
error thus created is negligible, as has been indicated 
elsewhere.4 The position of the neutral axis defines those 
areas on the surface of the cross section whose fiber 
stresses are in tension and those areas in compression. 
By assuming moments of these forces with respect to the 
principal axes, and by summing the longitudinal forces, 
the two moments and the compressive thrust are defined 
internally. Since the internal capacity must be equal to 
the externally applied forces, the maximum external 
load and its limiting eccentricities are readily, but not 
easily, computed. By studying each wide-flange column 
of interest in a like manner, and by making use of the 
appropriate characteristics of the high-speed digital 
computer, the complete domain of solutions has been 
established in table form for all beam-columns of in
terest.2 One may then develop a family of interaction 
curves for each cross-sectional member. This has been 
done, and seven such families of curves are shown in Figs. 
5 through 11, later in this paper. I t is to be noted that the 
values on the charts are stated in absolute values rather 
than in non-dimensional ratios. This facilitates the de
sign process. 

To avoid complication caused by the interaction of 
the member and the frame of which it is a part, the scope 
of this work has been limited to the same degree as has 
been done by other investigators.9>18-15 However, it is no 
more limited than are the AISC formulas previously 
mentioned. Following are the limitations and assump
tions of significance to the design charts developed and 
illustrated in this paper: 

1. The member is prismatic and of the wide-flange 
family. 

2. The stress-strain curve is conventionally bi-linear. 
3. I t is assumed that strain hardening does not occur, 

and that no fiber prematurely ruptures. 
4. The thrust and the moments are continually in

creasing, and their rates of change with respect to 
deformations of the cross section are non-zero until 
the ultimate load has been achieved. 

5. The geometry of the cross section is not altered by 
loading. 

6. No account of the rate of application of load is in
cluded. 

EQUATIONS 

The principles of the equilibrium approach will be 
briefly discussed here and the basic equations will be 
stated. The complete discussions and derivations are 
available in the work of McDonough.14 The notation for 
the cross-sectional properties, where these sections are 
prismatic and of the wide-flange class, is defined in Ap
pendix A. Other parameters of interest are defined in 
Appendix B. The notation related to tne cross-sectional 
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geometry is graphically depicted in Fig. 3, which also 
shows dimension b as it is used to position the neutral 
axis on the cross section of the tension flange (dimension 
c at the compression flange is similar), and thus define 
the required forces. From the geometry shown in Fig. 3, 
one additional parameter used in the equation is d, 
where 

p + (b/c)~\ 
a) 

The basic equations for moment and longitudinal 
thrust as derived are : 

P = Fytwd + 2tf{c + b) (2) 

M* = Fytfdwf(c - b) + \itw{dw} - tfY - d* (3) 

M» = Fyt,(y2b? b*) (4) 

where d ^ dwf, c ^ 3 ^ / •> a n d b S %bf. 
By the selection of the values of b and c, the neutral 

axis is positioned and a particular solution is established. 
However, as these equations are stated, they cannot 
account for the variations in force across the widths of 
elements, nor can they account for situations in which 
the neutral axis intersects only the flange, or only one 
flange and the web. These are special cases as far as the 
equations are concerned, and when they do occur there 
must be correction terms added to the equations above. 
There are fourteen such special situations, not all of 
which exist simultaneously. The resulting equation of 
moments with the appropriate correction terms and the 
corresponding equation for longitudinal thrust P are 
extremely complicated, inasmuch as there are a con
siderable number of terms and an involved logic used to 
select the appropriate terms in each equation. For all 
options, the corresponding correction terms appear in 
Ref. 14 and will not be repeated in their entirety. As an 
illustration, however, the correction equation for a par
ticular case of Mx is stated here as Eq. (5), as dictated 
by the situation shown in Fig. 4, which illustrates the 
position for a large magnitude of thrust (P), a small 
magnitude of major axis moment (Mx), and negligible 
value of minor axis moment (My). The appropriate cor
rection to the magnitude of Mx is: 

dMx 

m 
c - b 

c - b 

d V (c- b) 
tJtfFy + 2V

 j '-t/Fy + 

Neutral Axis \i + b 

•'"•^muiimmmimjjjjy 
I f f T T T T T n i T f T r H — -

Fig. 3. Neutral axis on section 

y w > f b 

c = - c b < b f / b f b ) 

bffe (a) b f b 

dwtb
 ( « ) dwfb 

dwf 

Fig. 4. Proportioning neutral axis positions in cross sections 

The final equation for a particular situation (position of 
the neutral axis corresponding to a thrust with two eccen
tricities) required to give the maximum moment is the 
sumofEqs . (3) and (5). 

Each wide-flange cross section of interest was inves
tigated by varying the values of b and c in these equa
tions and, in turn, providing an output of combinations 
of M, Mx, and Mv for each particular member. This 
provided the raw data from which the interaction- curves 
and the design graphs were developed. 

PROPORTIONALITY CONSTANTS 

In the previous material, the ultimate compressive loads 
and their corresponding biaxial moment capacities for 
various members have been established. I t is not im
possible to use a single chart or a somewhat more com
prehensive set of graphs for each cross-sectional shape for 
design purposes; however, the number of charts or graphs 
would indeed be cumbersome. For the column sections 
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selected, 73 such graphs would be a minimum for accu
rate results.2 In order to reduce the volume of design aids 
required, and in order to make the design process more 
tractable, Baseheart has established a relationship be
tween sets of selected members and their most represen
tative section, called the base section. This relationship 
is, in fact, a dimensionless geometrical constant. It 
allows the relationships between forces (longitudinal 
thrust and biaxial moments) on a particular cross sec
tion, called the base section, and similar forces on other 
wide-flange sections in the same group to be estab
lished. The groups are formed to effect an acceptable 
compromise between exactness and tractability of de
sign. The geometrical relationships are briefly presented 
in this part of the paper. 

Figure 4 shows the basis for the derivation of the 
geometrical constant when the ratios of bf to dwf are 
approximately the same. The position of the neutral axis 
is set to the same relative position on all cross sections; 
thus, the values of b and c are set proportional to the 
widths of the members' respective flanges. The forces 
that are the internal capacities of these sections are then 
also similarly proportioned. However, as no two wide-
flange sections are exactly proportional in this manner, 
base sections are selected such that, for sections in their 
group, the arithmetic discrepancies inherent in this 
method result in final design selections that are within 
5 % of an exact numerical solution.2 

The following relationships can be obtained by sub
stitution and by dividing the load capacity of the base 
section by the load capacity of any other section in that 
group: 

ft - (ttfr - R'P <6> 

M-> - ®(ttty -w (7> 

In these equations Ri, R2, and R% are the geometrical 
constants which define the relationships between the 
thrusts and moments on the base sections and all other 
sections of its groupings for proportional locations of the 
neutral axis. The significance of these expressions is that 
they allow one interaction graph, with a family of P 
curves, to be used for the analysis of all cross sections in a 
particular grouping of members. These groupings, seven 
in number, for the 73 columns selected, were developed 
by a computer search. 

DESIGN GROUPS 

Once the family of interaction curves for the base sec
tion have been developed, and the interaction force 
values for the other wide-flange sections in each grouping 

have been established such that they are proportional 
to that group's base section, the multiplicity of moment 
and load combinations can be plotted. This set of mo
ments and loads, which corresponds to any particular 
position of the neutral axis, and which defines the per
missible domain of P, Mx, and My, can be set up as a 
convenient design chart. Such charts (Figs. 5-11) are 
readily usable for direct design by practicing engineers. 
Were it not for the grouping of sections in terms of one 
base section, there would have to be one interaction 
graph for each cross-section, instead of seven design 
nomographs, one for each group. 

For example, Fig. 5 (upper right) shows the family 
of interaction curves for the base section of group 1, 
which is a W14X95 member. Figure 5 also shows the 
straight lines relating the various other sections of the 
grouping to the base section through the use of R% (in 
the case of Mx) and Rz (in the case of Mv). An illustrative 
example shows how one uses the graphs to relate the 
values of Mx and My and the corresponding ultimate 
load P for a given section. 

The interaction forces for the base sections are de
termined directly from the upper right-hand graph in 
Fig. 5, but for other sections in this grouping, forces are 
proportioned to the base section values by means of the 
constants Ri, R2, and R%. Since the values R2 and R% 
which define this relationship are dimensionless con
stants, the lower right and upper left graphs in Fig. 5 
automatically establish the relationships of Eqs. (7) and 
(8). This is done by making the slope of the straight 
lines, for other sections of the group, equal to R2 times 
the slope of the straight line for the base section. The 
same process follows for Z?3. The base section thrust can 
be obtained from the interaction of the moment values 
in the upper right-hand graph of Fig. 5. The thrust P 
for any cross section in the grouping can then be calcu
lated using Eq. (6) and the Pb value read from the graph. 
Thus, design is handled by the three graphs combined 
into a nomograph. One such nomograph is used for each 
of the seven member groupings. 

NUMERICAL EXAMPLE 

An example problem is shown illustrating the use of the 
base section interaction graphs, i.e., the nomograph, for 
determining the maximum load for a wide-flange section 
which is subjected to moments about each of the two 
principal axes. 

Given: Applied Mx = 1705.0 kip-in. 
Applied Mv = 325.3 kip-in. 
Selecting a W10X54 column section of A S T M 

A36 steel (Fy = 36.0 ksi), find the maximum 
compressive thrust, P. 

From Appendix B, the W10X54 is a member of 
Group 1, in which the W14X95 shown in Fig. 5 is the 
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Fig. 5. Interaction curves and nomagraphs: Group 1 

10 

E N G I N E E R I N G J 0 U R N A L / A M E R I C A N I N S T I T U T E OF S T E E L C O N S T R U C T I O N 



Fig. 6. Interaction curves and nomagraphs: Group 2 
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base section and has a load capacity Pb = 365 kips. This 
is determined from the equivalent Mx

b and My
b values, 

both of which may be determined graphically as indi
cated on Fig. 5. From Appendix B, one obtains 1/Ri = 
0.570 for the W10X54. Therefore, from Eq. (6), the 
following is computed: 

P = (l/Ri)Pb = (0.570) (365) 

= 208 kips 

This semi-graphical procedure gives a value of 208 kips 
of longitudinal thrust as the limiting loading when the 
given moments exist on the braced cross section. An 
exact numerical solution for the same loading case gives 
as P a value of 207.1 kips.14 

CONCLUSION 

This paper has presented a design procedure from which 
one can readily calculate the maximum compressive 
load that a column can accept while subjected simul
taneously to bending moments about both of the princi
pal axes. Although a precise percentage of error for any 
given solution from the graphs is not mathematically 
derivable, the authors have used a numerical process to 
determine that the error from this design process is less 
than 5 percent. The intent of Part 2 of the AISC Speci
fication has therefore been extended by a conservative 
and simple design procedure. 
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APPENDIX A: NOMENCLATURE AND SYMBOLS 

Awf Total area of a wide-flange cross section 

b Dimension defining the position of the point 
of intersection of the neutral axis with the 
mid-line of the tension flange. The dimen
sion is positive in the negative x-direction. As 
a subscript, the symbol denotes specific 
reference to the base section. 

bf Width of the flange 

Dimension defining the position of the point 
of intersection of the neutral axis with the 
mid-line of the compression flange. The di
mension is positive in the negative ^-direction. 

d Dimension defining the position of the point 
of intersection of the neutral axis with the 
mid-line of the web. The dimension is posi
tive in the positive ^-direction 

dwf Depth of the wide-flange cross section mea
sured between mid-lines of the flanges 

dMx and Correction terms for value of the cross section 
dMy plastic moments 

ex Eccentricity of the compressive for P mea
sured parallel to the *-axis 

ey Eccentricity of the compressive force P mea
sured parallel to the j/-axis 

Fy Yield point of material in tension and com
pression 

g General representation of proportionality 
constants 
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Mx 

Mv 

M% 

M% 

NA 

P 

Internal moment capacity with respect to the 

x-axis 

Internal moment capacity with respect to the 

j'-axis 

Full plastic moment capacity of the cross 

section acting about the x-axis 

Full plastic moment capacity of the cross sec

tion acting about the _y-axis 

Neutral axis 

Ultimate load-carrying capacity 

Ri 

R2 

Rz 

The load corresponding to a cross section 

fully yielded under compressive stresses 

Thickness of the flange of the cross section 

Thickness of the web of the cross section 

Geometrical ratio of the thrust on a section 

to the thrust on the base section 

Geometrical ratio of the moment Mx on a 

section to the moment Mx
b on the base section 

Geometrical ratio of the moment Mv on a 

section to the moment Mv
b on the base section 

APPENDIX B: GROUP DESIGN GRAPHS 

W Section 

W8X17 
W8X20 
W8X24 
W8X28 
W8X31 
W8X35 
W8X40 
W8X48 
W8X58 
W8X67 
W10X33 
W10X39 
W10X45 
W10X49 
W10X54 
W10X60 
W10X66 
W10X72 
W10X77 
W10X89 
W10X100 
W10X112 
W12X40 
W12X45 

Group 

7 
7 
4 
4 
3 
2 
7 

1 
3 
5 
6 
4 
4 
1 
1 
1 
2 
3 
2 
2 
2 
5 
6 
6 

1/Ri 

0.305 
0.375 
0.449 
0.526 
1.000 
1.000 
1.301 
0.510 
1.918 
1.000 
0.536 
0.732 
0.861 
0.513 
0.570 
0.632 
1.913 
2.372 
2.236 
2.591 1 
2.923 
1.681 
0.642 
0.720 

W Section 

W12X50 
W12X53 
W12X58 
W12X65 
W12X72 
W12X79 
W12X85 
W12X92 
W12X99 
W12X106 
W12X120 
W12X133 
W12X161 
W12X190 
W14X43 
W14X48 
W14X53 
W14X61 
W14X68 

I W14X74 
W14X78 
W14X84 
W14X87 
W14X95 

Group 

6 
4 
3 
3 

3 
3 
2 
3 
3 
3 
3 
2 
5 
5 
7 
7 
7 
6 
6 
6 
4 
3 
1 
1 

1/tfi 

0.720 
1.000 
1.853 
2.099 
2.332 
2.567 
2.435 
3.004 
3.241 
3.481 
3.934 
3.862 
2.405 
2.845 
0.796 
0.898 
1.000 
1.000 
1.121 
1.226 
1.496 
2.700 
0.917 
1.000 

1 1 

1 W Section 

| W14X103 
W14X111 

1 W14X119 
W14X127 
W14X136 
W14X142 
W14X150 
W14X158 
W14X167 
W14X176 
W14X184 
W14X193 
W14X202 
W14X211 
W14X219 
W14X228 
W14X237 
W14X246 
W14X264 
W14X287 
W14X314 
W14X342 
W14X370 
W14X398 
W14X426 

Group 

2 
2 
2 
2 
2 
2 
2 
5 
5 
5 
5 
5 
5 

1/tfi 

1.089 
1.173 
1.263 
1.348 
1.440 
1.514 
1.609 
1.698 
1.789 
1.887 
1.983 
2.076 
5.982 
6.241 
6.491 
6.768 
7.028 
7.306 
7.848 
4.366 
4.794 
5.224 
5.664 
6.100 
6.549 
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