
Calculation of Effective Lengths and Effective 
Slenderness Ratios of Stepped Columns 

J O H N P. ANDERSON AND JAMES H. WOODWARD 

T H E ANALYSIS of stepped columns arises in the design of 
heavy mill buildings. Such columns are generally loaded 
at the top and at the section where the cross section 
changes. The application of the AISC Specification 
requires that the engineer determine the effective length 
of each section of the column. This is a problem in 
elastic stability theory, and the results are dependent not 
only on the end fixities, but also on the ratio of the end 
axial load to the intermediate axial load, the ratio of 
the length of the upper segment to the length of the 
lower segment, and the ratio of the upper moment of 
inertia to the lower moment of inertia. 
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Fig. 1. End fixity conditions considered 
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In this paper the authors have extended the analysis 
to three cases of practical interest, not previously con­
sidered. Consistent nondimensional characteristic equa­
tions are given for all five cases shown in Fig. 1. 

The characteristic equations are complicated trans­
cendental equations that must be solved for the effective 
lengths. Because of the complexity of the equations, 
the authors believe that this problem is especially suited 
for solution on a digital computer. 

A comprehensive flow chart for a computer program 
which calculates effective lengths for any of the five 
cases is included. T h e program features simplified input 
and low running time, and is particularly well suited 
for a time-sharing computer. In the authors ' experience 
it has proved to be a convenient and accurate engi­
neering tool. 

EFFECTIVE LENGTHS OF STEPPED COLUMNS 

T o illustrate the method of analysis, the fixed-slider case 
will be presented in detail. Let E be constant for upper 
and lower segments; and within each segment, assume 
the axial load and the cross section geometry do not 
vary. The terms I\ and h represent the moments of 

y / ' / / ' 

Fig. 2. Parameters for solution of fixed-slider case 
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inertia of the upper and lower portions, respectively. 
The load applied at the top is P i , and at the step (or 
crane rail) is i V The upper length is / i , and l2 is the 
length of the lower segment. T h e total length is denoted 
b y / . 

During buckling the slider will translate; however, 
the column is not allowed to rotate at that boundary. 
Let M\ be the moment developed at the top, h\ the 
slider translation, and <52 the deflection at the step. 
These parameters along with the coordinate system are 
illustrated in Fig. 2. 

The moment distribution in the top portion is 

M(X) = M i + Pi[5i - yi(X)]; h<X<l 

and in the lower portion is 

M(X) = M1 + P1[d1 - y2(X)] + P2[82 - y2(X)]; 

0 < X < h 

Since Ely" = M(X), the governing differential equations 

where 

yi + 7 i 7 i = — ; h < X < I 

y2 + y2
2y2 = 

where 

Eh 

M1 + Pm + P282 

Eh 

(1) 

0 < X < h 

7 i 2 = 
Pi 

Eh' 

The boundary conditions are 

722 = 
Pi + Pz 

Eh 
(2) 

yi'(i) = o 
^1(^2) = 82 

y*(U) = St (3) 

yi'(k) =yi'(l*) 
y*(P) = 0 
yt(0) = 0 

Solution of the differential equations and evaluation 
of the constants of integration so that the boundary con­
ditions are satisfied eventually leads to the following 
characteristic equation: 

h 
y2lt-cos (71/1) sin (72/2) + (1 + sK sin (71/1) 

Now let 

and from Eq. (2), 

71^1 Z 

cos (72/2) = 0 (4) 

(5) 

72/2 = y^-j-^l ( i + £ ) (6) 

= Zfi 

>-bM>+% 
Eq. (4) can now be written as 

h 
h 

- ,8-cosZsin (Z/3) + 0-S) sin Z cos (Z/3) = 0 

(8) 

For given length, load, and moment of inertia ratios, the 
lowest root (say Zrt) of this equation must be found. 
The computer program uses an iteration scheme to de­
termine Zrt. 

Zrt is the lowest value of 71/1 for which buckling can 
occur. From Eq. (6) the corresponding value of 72/2 is 
Zrt- fi. Using Eq. (2), we see that at buckling 

P i 

Pi + P2 

(9) 

•Eh 

Suppose we now define the effective lengths of the 
upper and lower segments (KL\ and KL2) to be values 
such that at buckling, 

(10) 

(KL2y 

In terms of the root ZTt of the characteristic equation, 
the effective lengths are 

KL\ — irl\/Zrt 

KU = TU/(ZTt-p) 

(11) 

These are the effective lengths that must be inserted 
into Eqs. (1.5-1) or (1.5-2) of the AISG Specification in 
order to obtain the allowable stresses in the upper and 
lower segments. 

The concept of buckling load is sometimes difficult 
to grasp for a column subjected to more than a single 
end load. With a stepped column, for example, there are 
two loads applied. One interpretation is to assume the 
ratio of P2 to P i to be fixed, and gradually increase Pi . 
Because the load ratio and geometry are fixed, the only 
parameter which changes in the characteristic Eq. (8) 

is z , since 

z=^-=/ iV^ 
The column buckles at the lowest value of Z (hence, 

Pi) for which Eq. (8) is satisfied. The corresponding P 2 

is then found from the specified load ratio. Then the ef-
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/ / / / /' / 

Fig. 3. Representative cross section of a heavy mill building 

fective lengths of the upper and lower segments can be 
found using Eq. (10). 

Appendix A contains the characteristic equations 
for each of the columns illustrated in Fig. 1. 

SELECTION OF END FIXITIES 

Close consideration must be given to the end fixities in 
an actual column, since they strongly influence the 
value of the effective length and, hence, effective slender-
ness ratio. 

The program based on this analysis will accommo­
date five different sets of end conditions, all of which can 
be found in structural columns. For crane columns in a 
mill building, however, either the fixed-pinned case or 
the fixed-slider case would normally be selected. 

A typical cross section of a heavy mill building is 
shown in Fig. 3. The first decision is whether or not the 
top of the column can undergo sides way. The sides way 
of importance is that resulting from vertical loads only, 
not wind. Tha t is, as a result of a large, vertical crane 
load at a single column, will it tend to buckle so that 
the top translates horizontally, or will this translation 
be prevented, as would be the case in a long building 
with columns tied together as illustrated in Fig. 4. 

T 
1 

W 

/ / > s ' 

1 
1 

Pi 

/" s •>' ^ *— 
RECOMMENDED MORE CONSERVATIVE 

Fig. 5. Top prevented from translating during buckling 

With lower chord roof bracing, a single column is 
prevented from translating by the other building col­
umns. However, in a short building or if there were no 
roof bracing, buckling of a single column would be ac­
companied by sidesway. 

When the top of the column is braced, another 
problem is to determine what length to take for the upper 
segment. This was discussed by Murray and Graham 1 

in relation to finding the moment distribution in a 
stepped column subjected to a lateral loading. Even 
though the buckling problem is basically different, much 
of their discussion concerning end fixities is applicable. 

For a column braced at the top and prevented from 
translating, it is recommended that the top be assumed 
pinned midway between the knee-brace and the bottom 
chord of the truss. A more conservative procedure is to 
ignore the knee-brace and assume the column is pinned 
at the bottom chord. 

For a column braced at the top, but, for such rea­
sons as those stated above, permitted to translate during 
buckling, it is recommended that the fixity at the top 
be modeled by a slider located at the bottom of the 
knee-brace. If placed at the bottom of the truss, a more 
conservative design would result. 

These recommendations are illustrated in Figs. 5 
and 6. 

g^---_fL isk 

1 

/ / / / > 

~1 
1 

/ / > / / 
RECOMMENDED 

/ / /* V / 

MORE CONSERVATIVE 

Fig. 4. Fig. 6. Top permitted to translate during buckling 
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Fig. 7. Example 

EXAMPLE 

A crane column in a multi-bay building is subjected 
to the loading shown in Fig. 7. The building has roof 
bracing between columns. 

Problem: For both upper and lower segments, determine 
the first term in the interaction formula for combined 
axial compression and bending, Eq. (1.6-1 a) of the 
AISC Specification: 

A 
Fa 

+ 
^mxJM ^"myjl ^mxjbx . ^"myjby < 1.0 

Solution: Since the structure has roof bracing, assume 
the top is pinned, with the pin midway between the 
lower and upper chords of the roof truss. The first step 
is to find the effective lengths of both upper and lower 
segments. Only the vertical loads enter into this calculation. 
Figure 8 summarizes the required data. 

For the authors' time-sharing program, the first 
input line is simply the number of problems to be 
solved. This is followed by an input line for each prob-

i-tt 
A =i 

A -. 

W 12x40: I i =310 IN4 

Ai = 11.1 IN2 

W 27x84: I 2 =2830IN< 

A2 = 24.8 IN4 

(KIPS) 
(FEET) 
( INCHES**' 
( INCHES**: 

Fig. 8. Required input data for solution of example 

lem to be solved, containing in order the parameter 
ph ft, lh /2, / 1 , 72, Ah A2, EFC. The last term, EFC, : 
the end fixity code for that particular problem and ha 
a value of 1 through 5. 

T h e input data for the example under consideratio 
is: 

100 1 

110 23, 69, 10.25, 22, 310, 2830, 11.8, 24.8, 3 

A complete listing of the output follows: 

S T E P C O 11:45 G 05/14/71 

******PROBLEM N O . — 1 
PI = 23.000 P2 = 69.000 
L I = 10.250 L2 = 22.000 
I I = 310.000 12 = 2830.000 
A l = 11.80 A2 = 24.80 

E N D F I X I T Y C O D E = 3 

T H E E F F E C T I V E L E N G T H S F O L L O W : 
KL1 = 19.243 KL2 = 29.070 (FEET 

T H E E F F E C T I V E SLENDERNESS R A T I O S 
F O L L O W : 

U P P E R K L / R = 45.05 
L O W E R K L / R = 32.66 

P R O G R A M S T O P AT 550 

U S E D 2.34 U N I T S 

U p p e r segment: 

Kl/r = 45.05 < Cc = 126.1 

T h e allowable stress can be determined using Ec 
(1.5-1) or Table 1-36 of the AISC Specification. Eithe 
gives 

Fa = 18.78 ksi 
fa = Pi/Ax = 23/11.8 = 1.95 ksi 

:.fa/Fa = 1.95/18.78 = 0.104 

L o w e r segment: 

Kl/r = 32.66 < Cc 

F r o m Table 1-36, 

Fa = 19.75 ksi 
fa = (Pi + P2)/A2 = 92/24.8 = 3.71 ksi 

fa/Fa = 3.71/19.75 = 0.188 

T h e design check would be completed by determir 
ing t h e contribution due to bending in Eq. (1.6-1) c 
the A I S C Specification, and making the unity check. 

Note: If the W12X40 and W27X84 are found to b 
unaccep tab le and different sections are to be tried, th 
p r o g r a m must be run again to find the new effectiv 
l eng ths and effective slenderness ratios. These quantitie 
are dependen t on the moment of inertia ratio, the lengt] 
r a t i o , and the load ratio, as well as the end fixities. 
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APPENDICES 

c. P 2 = 0 (Ref. 2 ) : 
Z B S I N ( Z ) SIN(ZB) 

COS(ZB) = 0 

Case 3—Fixed-Pinned: 

( Z / L R ) - C O S ( Z ) . 
(A-6) 

a. General (Ref. 4 ) : 
2 Z B S I N ( Z ) + (PR + 1 / P R ) Z B S I N ( Z ) . 

COS(ZB) + [PR + LR(1 + PR) ] • (ZB)2 • SIN(Z) • 
SIN(ZB) - (1 + 1/PR)(1 + PR + P R / L R ) Z -
Z B C O S ( Z ) COS(ZB) + (1 + P R H Z / L R ) -
COS(Z) SIN(ZB) = 0 (A-7) 

A. Summary of Characteristic Equations—A summary 
of the characteristic equations for the stepped columns 
with the various end fixities shown in Fig. 1 is given in 
this appendix. An extensive search revealed only two 
of the cases presented. Those equations not specifically 
referenced were derived by the authors. All of the equa­
tions have been rewritten so that the notation is con­
sistent throughout, and all equations are nondimen-
sionalized. 

In most cases the characteristic equations for the 
loadings of P i = 0 or P 2 = 0 are not readily obtained by 
reduction of the general equation. For this reason, the 
special cases of either the top or intermediate load being 
equal to zero are given separately. 

The parameters in the equations have the following 
definitions: 

IR = 7 i / / 2 Z = 71/1 
LR = / i / / 2 ZB = 72/2 
PR = P1/P2 

Case 7—Pinned-Pinned: 

a. General (Refs. 2 and 3) : 
(1 + PR)(1 + PR + P R / L R ) Z C O S ( Z ) SIN(ZB) 

+ PR[PR(1 + LR) + L R ] Z B S I N ( Z ) . 
COS(ZB) - SIN(Z) SIN(ZB) = 0 (A-l) 

b . P i = 0: 
[2 + 1/LR - ( L R - Z B ) 2 / ( 3 - I R ) ] SIN(ZB) 

+ L R Z B C O S ( Z B ) = 0 (A-2) 

c. P 2 = 0 
Z B S I N ( Z ) COS(ZB) + ( Z / L R ) - C O S ( Z ) . 

SIN(ZB) = 0 (A-3) 

Case 2—Fixed-Free: 

a. General: 
(1 + P R ) Z G O S ( Z ) COS(ZB) 

- L R P R Z B S I N ( Z ) SIN(ZB) = 0 

b. P i 0: 
COS(ZB) - 0 

(A-4) 

(A-5) 

b. P i = 0: 

2 + [ L R Z B + 1 / ( L R Z B ) ] SIN(ZB) 
- [2 + 1/LR - ( L R . Z B ) 2 / ( 3 - I R ) ] COS(ZB) 

= 0 (A-8) 

c. P 2 = 0: 
ZB-SIN(Z)COS(ZB) + (1 + L R ) - ( Z B ) 2 - S I N ( Z ) . 

SIN(ZB) + ( Z / L R ) - G O S ( Z ) SIN(ZB) 
- (1 + l / L R ) - Z - Z B . C O S ( Z ) COS(ZB) = 0 

(A-s>r 

Case 4—Fixed-Slider: 

a. General: 
L R Z B C O S ( Z ) SIN(ZB) + (1 + 1 /PR) -Z-

SIN(Z) COS(ZB) = 0 (A-10) 

b. P i = 0: 
SIN(ZB) + ( L R - Z B / I R ) COS(ZB) = 0 (A- l l ) 

c. P 2 = 0: 
LR • ZB • COS(Z) SIN(ZB) + Z • SIN(Z) COS(ZB) 

= 0 (A-12) 

Case 5. Fixed-Fixed: 

a. General: 
- 2 ( 1 + P R ) Z Z B + 2 Z Z B C O S ( Z ) 

- 2(1 + l / P R ) Z Z B C O S ( Z B ) 
+ 2(1 + PR + l / P R ) - Z - Z B - C O S ( Z ) COS(ZB) 
- (1 + PR) [ (Z) 2 /LR + (ZB) 2-LR] SIN(Z) • 
SIN(ZB) + [PR + (1 + P R ) - L R ] - Z - ( Z B ) 2 -
COS(Z) SIN(ZB) + (1 + 1 /PR)- (1 + PR 
+ PR/LR) - (Z )2 .ZB-SIN(Z) COS(ZB) = 0 

(A-l 3) 

b. P i = 0: 
2 + (LR-ZB) 2 / IR - [2 - (LR-ZB)V(12-IR 2 ) 

+ L R - ( 1 + L R ) - ( Z B ) 2 / I R ] COS(ZB) 
+ [ - Z B + ( L R Z B ) 3 / ( 3 I R ) + L R - Z B / I R ] . 
SIN(ZB) = 0 (A-14) 

c. P 2 = 0: 
2 Z - 2 .Z -COS(Z) -COS(ZB) + ZB-(1 + I R ) / 

L R S I N ( Z ) SIN(ZB) - Z Z B ( 1 + LR) • 
COS(Z) SIN(ZB) - (Z)2-( l + 1 /LR) -S IN(Z) . 
COS(ZB) = 0 (A-l 5) 
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B. Program Flow Chart—The symbols appearing in 
the flow chart are defined as follows: 

Main Program 

A l , A2 

B 
CK, DK, E K 
EFC 
I I , 12 

I R 

K L 1 , KL2 

L I , L2 

LR 

PI 
P2 
PR 
NP 
R 1 , R 2 

S R I , SR2 

Z l 

Z2 

ZST 

ZDEL 

Cross-sectional areas of upper and 
lower segments, respectively 

A Eq. (7) 
Temporary storage 
End fixity code, (same as case no.) 
Moments of inertia of upper and 

lower segments, respectively 
11/12 
Effective lengths of upper and lower 

segments, respectively 
Lengths of upper and lower seg­

ments, respectively 
L1 /L2 
Axial load applied at top of column 
Axial load applied at step of column 
P1 /P2 
Total number of problems 
Radii of gyration of upper and lower 

segments, respectively 
Effective slenderness ratios of upper 

and lower segments, respectively 
Yi/i that solves characteristic equa­

tion 
72, /2, Eq. (6) 
Initial guess to root of characteristic 

equation 
Initial iteration increment 

Functions 
FA1(X) 
FB1(X) 
FC1(X) 
FA2(X) 
FC2(X) 
FA3(X) 
FB3(X) 
FC3(X) 
FA4(X) 
FB4(X) 
FC4(X) 
FA5(X) 
FB5(X) 
FC5(X) 
X 
XB 
A l , A2, A3, 

A4, A5 
SUBROUTINE 

F 

X S T 
X D E K 
X R T 
I T 

I T M A X 
N 
N M A X 

TA, TB 

Eq. (A-l) 
Eq. (A-2) 
Eq. (A-3) 
Eq. (A-4) 
Eq. (A-6) 
Eq. (A-7) 
Eq. (A-8) 
Eq. (A-9) 
Eq. (A-10) 
Eq. (A- l l ) 
Eq. (A-l2) 
Eq. (A-l 3) 
Eq. (A-14) 
Eq. (A-l5) 
Dummy argument 
X B 

Temporary storage 
SOLVE(F , XST, X D E L , X R T ) 
Function whose root is to be deter­

mined 
Initial guess to root 
Iteration increment 
Root 
Number of times iteration increment 

halved 
Maximum value of I T 
Number of iteration steps 
Maximum number of iteration steps 

allowed 
Temporary storage 
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