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Discussion by Sayed H. Stoman 

Ihe authors have presented an interesting and very useful 
study on the behavior of cross bracings. Application of the 
experimental study can result in significant savings both in 
the weight of the primary bracing elements as well as the 
main structure. 

However, as described in Part 1 of the authors' study, the 
results are predicated on a number of assumptions that must 
be fully realized in design application in order to ensure safety 
and economy. These assumptions are: 

(a) Both braces are identical in length and sectional and 
material properties, 

(b) One diagonal is always under tension while the other 
diagonal is in compression, and 

(c) End conditions are simple. 
Deviations from the above assumptions can lead to effec
tive length factors that are substantially different from those 
recommended by the authors. 

Brace effective length is a function of the axial loading 
in and stiffness of both diagonals. Hence, unless one diagonal 
is always under tension and the tensile diagonal is identical 
or superior to the compression diagonal, design of the com
pression brace on the basis of an effective length equal to 
0.5 times the diagonal length, as recommended by Picard 
and Beaulieu, or 0.85 times the half diagonal length as recom
mended by El-Tayem and Goel,^ may be unconservative for 
simply supported cross bracing systems. 

Moreover, when both diagonals are in compression, the 
transverse stiffness that is furnished by the respective di
agonals to each other is significantly reduced. Consequently, 
the resulting effective length factor can be much larger than 
the K^^^ of 0.72 that is cited by the authors. However, if the 
extreme ends of the compression diagonal are rigidly attached 
to the framed structure, a design based on Picard and 
Beaulieu's recommendation can be overly conservative. 

By employing the Raleigh-Ritz method of stationary poten-
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tial energy, Stoman '̂̂ '̂  formulated closed-form stability 
criteria for directly evaluating the transverse stiffness pro
vided by the tension brace to the interconnected compres
sion brace and for evaluating the compression brace critical 
load for any ratio of the axial force in the respective di
agonals. The criteria addressed the general case where the 
two diagonals are different in section and material proper
ties, stiffness and boundary conditions, and lengths. With 
permission from ASCE, figures and essential aspects of the 
formulation are excerpted here, as a supplement to the 
authors' study, to facilitate design: 

Brace ends built-in 
For the bracing system shown in Fig. 1, the transverse stiff
ness furnished by the tensile diagonal to the compression di
agonal was evaluated to be^ 

7r\4PE, + Q) 
K. 

where 

PE, = 

2L, 
(1) 

(2) 

and E,, I^, L^, and 2, respectively, represent modulus of 
elasticity, moment of inertia, length, and the axial force of 
the tensile diagonal. It was also shown^ that the compres
sion brace critical load is given by 

2L, 
P,, - APE, ^ —^ K, < 8.183 P£, (3) 

where 

PE. = 
TT̂  EJ, 

(4) 

In these equations, E,, I,, L,., and P, respectively, represent 
the modulus of elasticity, moment of inertia, length, and the 
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axial force of the compression diagonal. Substituting for K^ 
from Eq. 1 into Eq. 3 yields 

/^, = APE, + — (4PE, + 0 < 8.183 PE, (5) 

in which only 2 is a variable for a given bracing. 
In order to arrive at an expression for the effective length 

factor which is defined as 

(6) 

let ce, = — (7) 

(8) 

(9) 

Substituting a i , 0̂ 2, 7 and P,,. from Eq. 5 into Eq. 6 gives 

(10) 

iT --

a 

^2 

7 ~ 

= A 

= 

= 

e 
F 

PE, 

^Q_ 

P., 

K = {Vi) ^\- ^ ^ > 0.35 
1 +0:10:2 

For the special case when both diagonals are identical, 0:1 
= 0:2 = 1.0 and Eqs. 5 and 10, respectively, reduce to 

P,, = %PE, 4- 2 < 8.183 PE, 

and 

K = ^|- ^ > 0.35 

(11) 

(12) 

Equation 11 indicates that for identical diagonals as long as 

Fig. 1. Built-in cross bracing system Fig. 2. Simply supported cross bracing 
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the tensile diagonal axial force Q > 0.183 FE^, buckling of 
the compression diagonal will be in the second mode. How
ever, Q is bounded by Qy = .4^ x o^, i.e., brace area times 
its yield stress. 

Brace ends pinned 

Likewise, if the extreme ends of the diagonals were pinned 
to the structure as shown in Fig. 2, the transverse stiffness 
provided by the tensile diagonal to the compression diagonal 
would be"̂  

K. = 
TT̂  {PE, + Q) 

IL, 

and 

P,, = PE, + % K, 

(13) 

(14) 

substituting for K^ from Eq. 13 gives 

P„ = PE, + -^ (PE, + g) < APE, (15) 

Again, as in Eq. 5, for a given bracing the only variable in 
Eq. 15 is Q. The effective length factor as defined in Eq. 
6 then becomes 

K = j l ^ ^ L L ^ 0.50 (16) 
1 + Q:IQ:2 

For identical diagonals Eqs. 15 and 16 reduce to 

P^, = 2PE, + e ^ 4P£, (17) 

and 

K = A > 0.50 (18) 

Equation 17 mdicates that as long as 2 > 2 PE,, buckling 
of the compression brace will be in the second mode. How
ever, Q is bounded by Qy. 

Only tensile diagonal ends built-in 

If the tensile diagonal ends are built-in, then the transverse 
stiffness furnished by it to the simply supported compres
sion brace (see Fig. 3) is defined by Eq. 1, which upon sub
stitution into Eq. 14 yields 

P,, = PE, -h — (4PE, + G) < 4P£, (19) 

and 

K = J ' - " ' ' ' ^ 0 . 5 0 
1 -h 4aiQ:2 

(20) 

For identical diagonals (7, =0:2 = 1.0) these two equations 
simplify to 

P,, = 5PE, + G < APE, 

and 

K = ̂  I- ^ > 0.50 

(21) 

(22) 

Only compression diagonal ends built-in 

Similarly, the transverse stiffness provided by the simply sup
ported tensile diagonal to the built-in compression diagonal 
in Fig. 4 is defined by Eq. 13. Substitution of this K value 
into Eq. 3 yields 

/̂ .̂ = APE, + — {PE, + G) < 8.183 PE, (23) 

and 

4 -h 01^0.2 
(24) 

For identical diagonals (a, = 0̂2 = 1.0) the two equations 
reduce to 

P„ = 5PE, + G < 8.183 PE, 

and 

K 
1 - 7 

> 0.35 

(25) 

(26) 

Fig. 3. Cross bracing with tensile brace built-in 

RESULTS 

Equations 10, 16, 20, and 24 represent general expressions 
for evaluating the effective length factor for any diagonal 
lengths, section or material properties, and boundary con
ditions. These equations can be utilized for developing ef
fective length spectra for all values of the parameters 7, cei, 
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and ^2. It is evident that the effective length is very sensi
tive to the relative stiffness of the two diagonals, which can 
be adjusted by a proper selection of individual brace size 
and/or end conditions. 

The effective length factors thus obtained are subsequently 
plotted for illustration purposes and design application. Fig
ure 5 represents the effective length spectra for a built-in 
bracing system based on Eq. 10, assuming aj = 1.0 and 0:2 
ranging from 0.2 to 1.0. With 0.2 increasing, lvalues keep 
decreasing—with a range of 0.35 to 0.50. Likewise, the spec
tra obtained using Eq. 16 is plotted in Fig. 6 for the simply 
supported cross bracing. In this case, K values range from 
a minimum of 0.50 to a maximum of 1.0 depending on the 
ratios defined by 7, a j , and 0:2. 

Equations 12 and 18, which respectively represent special 
cases of Eqs. 10 and 16, are for identical diagonals under 
identical boundary conditions and are plotted in Fig. 7. Su
perimposed on this figure is a plot of Eqs. 22 and 26, repre
senting the effective length factor for identical diagonals of 
different boundary conditions—a special case of Eqs. 20 and 
24. Except for the limits of applicability, the preceding two 
equations are similar, and in fact identical for identical di
agonals, as described by Eqs. 22 and 26. Hence, attention 
must be paid to the limits of applicability when using these 
equations. Picard and Beaulieu's experimental solution points 
for simply supported, identical cross bracings are also shown 
in Fig. 7. 

It is also clear from Eq. 21 that unless the built-in tensile 
diagonal carries a compressive load in excess of FE,, buck
ling of the simply supported compression diagonal will be 
in the second mode. Similarly, Eq. 25 indicates that, as long 

as the axial force Q > 3.183 PE^ in the simply supported 
tensile diagonal, buckling of the built-in compression di
agonal will be in the second mode. Thus, with either brace 
ends built-in, stability enhancement of the system over a sim
ply supported cross bracing is quite evident, noting that Q 
is bounded by Qy. 

Caution must be exercised in the use of the criteria and 
specta curves at regions where Q approaches Qy or P^, 
when acting in compression. At these extremes, the "ten
sile" diagonal's flexural stiffness is at its minimum, and it 
may not be able to provide the necessary transverse stiff
ness to prevent a snap-through buckling of the compression 
brace to its lower mode; see Stoman^ for order of magni
tude of bending stresses in the tensile diagonal. (The posi
tive direction for Q and P is as shown in Figs. 1-4). 

CONCLUSION 

General effective length criteria for cross bracing systems 
are formulated. Effective length spectra curves are gener
ated to elucidate the criteria and to facilitate design applica
tion. Results indicate that the effective length is very sensi
tive to the relative stiffness of the two interconnected 
diagonals and, depending on brace end conditions, the ef
fective length factors values range from 0.35 to 1.0. Refereed 
experimental data available in the range agree well with the 
proposed solution. Application of the criteria will lead to 
an optimum design and enhance overall structural stability. 
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Fig. 4. Cross bracing with compressive brace built in Fig. 5. Effective length factor spectra for built-in cross bracing 
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Addendum/Closure by A. Picard and D. Beaulieu 

The authors appreciate the interest shown by Dr. Stoman 
in their papers and thank him for his useful and weighty con
tribution. 

The authors agree that conclusions and equations are valid 
only if the assumptions mentioned in the papers and em
phasized by Dr. Stoman are satisfied. 

The assumption that the connections at the ends of the di
agonals are perfect hinges is on the conservative side. The 
assumption that one diagonal is always under tension has al
lowed to obtain Eqs. 9 to 12 of Part 1, by solving the differen
tial equation of equilibrium of the tension member shown 
in Fig. 5. These equations, which are used to compute the 
transverse stiffness of the tension diagonal, are not valid if 
the diagonal is not in tension. Therefore, Eq. 20 is valid up 
to r = 0, that is K,,^, = 0.72. 

The assumption that both braces are identical was made 
in order to simplify the theory. For instance, in Part 1, Eq. 
11 becomes Eq. 12 because it is assumed that ///^. = 1.0. 
This ratio could have been retained in the following equa
tions. Similarly, two different lengths, for instance L, for 
the tension member and L2 for the compression member, 
could have been used. 

These assumptions land the assumption that the behavior 
of the tension diagonal is elastic up to buckling of the com
pression diagonal were made because they correspond to 
usual practical conditions. A complete finite element model 
has recently been developed to allow the simulation of elas
tic and inelastic behavior of cross-bracing systems includ
ing the effect of partial end restraints. The results of this study 
will be published later, and it is believed that they will sup
port Dr. Stoman's elastic theory. 

Fig. 6. Effective length factor spectra for simply supported 
cross bracing 
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Fig. 7. Effective length factor for identical cross bracing of 
various boundary conditions 
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