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Generalized Elastic Lateral-Torsional  
Buckling of Steel Beams
ROBERT S. GLAUZ and BENJAMIN W. SCHAFER

ABSTRACT

A concise review is provided of the classical elastic lateral-torsional buckling moment for steel beams as utilized in the AISC Specification 
(2022). Rather than make assumptions regarding the cross-section properties, the derivation is provided in its general form for an arbitrary 
steel beam—that is, one that may be asymmetric and may include any manner of varying geometry, thickness, or cross-section shape. The 
cross-section properties that underpin the calculation are fully detailed. The assumptions that are inherent in the classical derivations (no 
shear, no cross-section distortion, etc.) are also fully detailed. The manner in which the generalized lateral-torsional buckling formula may 
be simplified for particular sections (e.g., a singly symmetric channel) with no loss of accuracy is explained. Adaptations and approximations 
utilized in the 2022 edition of the AISC Specification for elastic lateral-torsional buckling moment of specific sections (e.g., mono-symmetric 
I-section, angles, etc.) are assessed against the actual elastic solution, and the accuracy and clarity of the assumptions utilized are evalu-
ated. The generalized formula, consistent with current assumptions but applicable to all structural steel cross sections, is recommended for 
future reference in the main body of the AISC Specification.
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INTRODUCTION

Steel beams with large unbraced spans are susceptible to 
lateral-torsional buckling. This instability is manifested by 
simultaneous lateral translation and twisting of the mem-
ber, as shown in Figure 1. Upon lateral-torsional buckling, 
the beam is unable to carry additional load due to the for-
mation of plastic mechanisms in the cross section triggered 
by the buckling that ultimately result in localized loss of 
stiffness and the potential for collapse. Slender members 
with narrow cross sections and long unbraced lengths are 
more susceptible to lateral-torsional buckling.

An early example of lateral-torsional buckling failure, 
before this mechanism was better understood, was the col-
lapse of the Dee Bridge in Chester, England. Built in 1846 
for rail transportation, the main girders were 45  in. deep 
cast iron with 24-in.-wide bottom flanges but only 7-in.-
wide top compression flanges. Lateral-torsional instability 
(among other factors) led to the collapse during the cross-
ing of a multi-car passenger train in 1847 (Commissioners 
of Railways, 1848). Bridge engineers learned from this and 
other failures that the compression flange must be stabi-
lized or increased in size to prevent buckling.

The AISC Specification for Structural Steel Buildings, 
hereafter referred to as the AISC Specification, has evolved 
significantly over its history. The first edition (AISC, 1923) 
protected against lateral-torsional buckling in a simple, but 
effective and safe manner, treating the compression flange 
as a column expressing strength as a function of slenderness 
(L/b), where L is the beam length and b is the compression 
flange width. Column stability was reasonably well under-
stood based on the early work of Euler (1744), although the 
mathematics of beam elastic lateral-torsional buckling was 
not formalized until later by Timoshenko (1936). As shown 
in Figure 2, the design bending stress Fb was reduced as L/b 
increased from 15 to an upper limit of 40. This upper limit 
ensured sufficient stability to prevent elastic buckling fail-
ure. The 1936 edition of the AISC Specification continued 
using the same approach, allowing higher stress consistent 
with the higher yield strength of A9 structural steel at that 
time.

By the 1946 edition (AISC, 1946), the mechanics of elas-
tic lateral-torsional buckling were better understood. The 
two components of torsional stiffness for a doubly sym-
metric I-section can be approximated in terms of (L/b)2 for 
the warping resistance and Ld/bt for the pure torsion resis-
tance (Salmon and Johnson, 1980). For the vast majority 
of I-sections used in construction at the time, the flanges 
were thick enough for the pure torsion resistance to domi-
nate. Therefore, the lateral-torsional buckling design stress 
changed to a form using slenderness Ld/bt, where d is the 
depth of the section and t is the thickness of the flange. As 
shown in Figure 2, this significantly increased the design 
stress for many I-sections and the upper limit on slender-
ness was removed.
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The 1961 edition (AISC, 1961) continued with the same 
design stress expression using Ld/bt. Due to the introduction 
of A36 steel and the availability of different steel grades, 
this was the first edition to incorporate the material yield 
strength Fy into the provisions. This edition also recognized 
that deeper I-sections with thinner flanges could achieve 
higher strength due to the warping resistance. Therefore, 
the design stress was permitted to be the larger of the 1946 
formula and a new inelastic buckling expression utilizing 
(L/r)2. Instead of the compression flange width b, this for-
mula used r, defined as the radius of gyration of a tee sec-
tion comprising the compression flange plus 6 of the web 
area, which is approximately 0.27b for a rectangular flange. 
This generalization accommodated the use of flange geom-
etries other than rectangular. The 1961 edition also included 
a Commentary that acknowledged the existence of more 
accurate calculation methods stating: “Rational expressions 
for the elastic buckling strength of the beam, which take 

into account its torsional rigidity about its longitudinal axis 
as well as the bending stiffness of its compression flange, 
are too complex for general office use.” Tables of torsional 
properties did not appear in the AISC Steel Construction 
Manual, hereafter referred to as the AISC Manual, until the 
eighth edition (AISC, 1981).

It wasn’t until the 1986 LRFD edition (AISC, 1986) that 
both components of torsional stiffness were combined to 
correctly calculate the critical buckling moment for an 
I-section, rather than the larger of the two components. As a 
theoretically accurate calculation, its use was later extended 
to singly symmetric channel sections and may actually be 
used for any section bending about an axis of symmetry. 
This edition also provided approximations to the theoretical 
solution for other sections that are not symmetrical about 
the axis of bending. These and other approximations unique 
to particular cross sections are still in use in the current edi-
tion of the AISC Specification (2022).

L/b

Fb
(ksi)

W14×68

(Fy=30 ksi)
(Fy=33ksi)
(Fy=33 ksi)
(Fy=36 ksi)
(Fy=36 ksi)

Fig. 2.  AISC history of design stress for lateral-torsional buckling.

Fig. 1.  Lateral-torsional buckling—translation and twist.
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Figure 2 also illustrates that the 1986 strength permitted 
moments up to full plasticity, where the allowable design 
stress is shown as Mp/1.67Sx. A new inelastic buckling 
strength was implemented using a linear transition between 
the fully plastic moment and the elastic buckling moment.

This paper focuses on determination of the elastic 
lateral-torsional buckling moment and does not attempt to 
address inelastic buckling strength. The purpose is to show 
that the elastic buckling moment calculation can be applied 
in a consistent way for all cross sections without the approx-
imations that can result in unacceptable error, thus provid-
ing a unified approach for all cross sections.

ELASTIC THEORY

The classic approach to the elastic buckling solution of a 
linear prismatic member is to consider only end forces. 
The application of axial load P at eccentricities ex and 
ey as shown in Figure 3 provides a general solution for a 
beam-column undergoing any combination of axial load 
and uniform moments.

Assuming small displacements such that the longitudi-
nal stresses remain constant throughout the member length 
(first-order analysis), the three equations of equilibrium as 
expressed by Timoshenko and Gere (1961) are given as:

EIyu
iv + Pu + P yo ey( ) = 0″ ″ϕ− � (1)

EIxv
iv + Pv + P xo ex( ) = 0−″ ″ϕ � (2)

ECw
iv GJ xPey yPex Pro

2( )
+ P yo ey( )u P xo ex( )v = 0

ϕϕ β β −−−−

− − − ″″

″

�

(3)

where x and y are the principal axes of the cross section, u 
and v are translational displacements in the x and y direc-
tions, ϕ is twisting displacement, E is the modulus of elas-
ticity, G is the shear modulus, and the other variables are 
geometric properties of the cross section (Ix, Iy, Cw, J, 
xo, yo, ro, βx, βy). To solve these differential equations for 
warping-free pinned end conditions, the displacements (u, 
v, ϕ) are assigned sinusoidal forms of one half-wavelength, 

end translation and twist are restrained (u = v = ϕ = 0), and 
end moments and bimoments are zero (u″ = v″ = ″ϕ  = 0). 
The result is three simultaneous equations solved by equat-
ing the determinant of the coefficients to zero:
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where Mx (Pey) and My (Pex) are the end moments produced 
by the axial eccentricities, and Pex, Pey, and Pt are the axial 
loads at which elastic buckling occurs about the x-axis, 
about the y-axis, and in torsion, respectively:

Pex =
2EIx
L2

π

�
(5)

Pey =
2EIy
L2

π

�
(6)

Pt =
1

ro
2 GJ +

2ECw

L2
π⎛

⎝⎜
⎞
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(7)

The case of interest for lateral-torsional buckling is bend-
ing about the major principal axis. Using x as the major 
principal axis, the eccentricity ey is increased as the axial 
load P approaches zero. In the limit, P = 0, My = 0, and Mx 
is the critical moment for buckling about the x axis given 
by the equation:

	 Mx
2 + xPeyMx ro

2PeyPt = 0β − � (8)

The general solution to this quadratic has two roots rep-
resenting the critical moments for positive and negative 
bending (±ey). For beams bending about a non-principal 
x-axis, the elastic lateral-torsional buckling moment is 
given by the same formula as shown in Glauz (2017), with 

Fig. 3.  Beam-column elastic buckling problem.
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a more generalized expression for the flexural buckling 
component.

Mx
2 + xPeyMx ro

2PeyPt = 0β − � (9)
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where Ix and Iy are the moments of inertia about any orthog-
onal x- and y-axes (often the geometric axes of the section), 
and Ixy is the product of inertia. As the x-axis approaches 
the principal x-axis, the product of inertia Ixy approaches 
zero and Pey becomes Pey.

OTHER CONSIDERATIONS

The preceding development assumes small displacements 
and the results agree with numerical elastic buckling anal-
yses based on first-order internal stresses. In reality, dis-
placements prior to buckling (second-order effects) alter the 
buckling response. For bending about the x-axis, deflection 
in the y-direction prior to buckling provides a stabilizing 
effect and enables a higher buckling moment. The closer the 
ratio Iy/Ix approaches 1, the greater the increase in buckling 
moment. For Iy > Ix, the x-axis is no longer the major axis, 
and lateral-torsional buckling is unlikely to occur, although 
still possible for unsymmetrical sections with large βx mag-
nitude, low torsional stiffness, and shear center in tension.

In addition, the preceding solution assumes no distortion 
occurs within the cross section as the member undergoes 
lateral-torsional buckling. If the web is slender enough, 
destabilization of the flange during lateral-torsional buck-
ling may result in section distortion—often referred to as 
elastic lateral-distortional buckling (Bradford, 1992). This 
mode of buckling may be especially likely when bracing 
is only present for the compression flange and not the full 
member depth. Further, elastic local plate buckling in the 
section (another form of potential distortion in the section) 
and its potential interaction with lateral-torsional buckling 
are not covered here.

The provided buckling solution assumes warping-free 
pinned end conditions—that is, translation and twisting are 
restrained, and rotation and warping are free at both ends. 
Other end conditions where flexural and twisting wave-
lengths align will yield the same solution, except with L 
replaced by the half-wavelength KL, where K is an effec-
tive length factor. As an example, fixing the rotation and 
warping at both ends corresponds to K = 0.5. For bound-
ary conditions where flexural and twisting wavelengths 
do not align, the solution is more complex. However, the 
critical moment can be approximated using different KL 
values for the flexural component, Pey, and the torsional 
component, Pt.

The buckling solution (Equation 8) is also based on a uni-
form moment induced by equal and opposite end moments. 
The elastic buckling moment for unequal end moments has 
historically been handled in the AISC Specification by 
approximation using a multiplicative bending coefficient 
Cb, based on the ratio of the end moments as given by Equa-
tion 11, where M2 is the larger end moment and the ratio  
M1/M2 = −1 for uniform moment.

	
Cb = 1.75+1.05

M1

M2
+ 0.30 M1

M2

2

2.3≤
⎛
⎝⎜

⎞
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(11)

This Cb coefficient increases the buckling moment by up 
to 2.3 times the uniform moment case, where the resulting 
buckling moment is the magnitude at the M2 end. Further, 
Equation 11 for Cb assumes a linear moment diagram; how-
ever, the primary application for beams involves transverse 
loading and thus a nonlinear moment diagram (e.g., para-
bolic for uniform load). Many codes use the refined bend-
ing coefficient shown in Equation  12 to more accurately 
approximate the buckling moment for unbraced spans with 
transverse loads. It is a slight variation of the expression 
developed by Kirby and Nethercot (1979), which uses the 
absolute value of applied moments at the quarter points 
(MA, MB, MC) and the maximum moment (Mmax) within the 
unbraced span. This multiplier ranges from 1.0 to 5.0, and 
the resulting buckling moment is the magnitude at the loca-
tion of Mmax.

	
Cb =

12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC �
(12)

Other bending coefficient expressions have been devel-
oped to approximate the buckling moment for some spe-
cific cases, such as Wong and Driver (2010) for doubly 
symmetric I-shape beams, Helwig et al. (1997) for singly 
symmetric I-shape beams, and Yura (1995) for interior span 
of I-shape beams with top flange lateral restraint.

The application of transverse loads also produces shear 
stresses in the member. The elastic buckling solution lead-
ing to Equation 8 does not consider shear stresses, which for 
slender beams are minor compared to longitudinal stresses; 
however, Liang et al. (2022) have shown cases where shear 
stresses are important to consider and provided modifica-
tions to the classic formula. The location of transverse load 
application can also influence the lateral-torsional buck-
ling behavior. For a vertical load applied with a horizon-
tal offset from the shear center, torsional forces are applied 
to the member. The resulting pre-buckling torsional dis-
placements can adversely affect the torsional and flexural 
components of the lateral-torsional buckling response. 
For a vertical load applied with a vertical offset from the 
shear center the load application point can either increase 
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or decrease the buckling moment. For a downward load 
applied to a beam above the shear center, small rotation 
of the member prior to buckling will be amplified by the 
additional torque induced by the load location and decrease 
the buckling moment. On the other hand, a downward load 
applied below the shear center will counteract any small 
rotation of the member prior to buckling and increase the 
buckling moment. Some design codes such as Eurocode 3 
(CEN, 2005) provide additional coefficients to account for 
the load height effect, and the AISC Specification provides 
additional references in its Commentary.

All of these considerations are excluded from the formu-
las presented in this article, except that the commonly used 
bending moment gradient coefficient Cb is included for con-
sistency and clarity.

SECTION PROPERTIES

The elastic buckling solution is applicable to a member of 
any cross section. The section properties required to deter-
mine the buckling moment about the x-axis are the moments 
of inertia, Ix and Iy, the product of inertia, Ixy, the torsional 
warping constant, Cw, the St. Venant torsional constant, J, 
the polar radius of gyration about the shear center, ro, and 
a unique asymmetry property, βx. Figure  4 shows a gen-
eral unsymmetrical cross section with x- and y-axes pass-
ing through the centroid, c, along with the location of the 
shear center, o, and asymmetry point, a. The centroid is the 
location where axial loads produce no moments, the shear 
center is the location where transverse loads produce no tor-
sion, and the asymmetry point is the offset from the shear 
center that produces torsional geometric stiffness due to 
flexure. The vector from the shear center to the asymmetry 
point is half of β, and the component of that vector perpen-
dicular to the x-axis is βx/2.

Analysis of the longitudinal stresses resulting from com-
pression and flexure require integration over the area of the 

cross section. These integrations correspond to the familiar 
terms area, A, moments of inertia about the x- and y-axes, Ix 
and Iy, the product of inertia, Ixy, the polar moment of iner-
tia about the centroid, Ic, and the radius of gyration about 
the centroid, rc. The angle to the principal axes, α, and the 
principal axis moments of inertia, Ix and Iy, are also given.

A = dAA∫ � (13)

Ix = y2 dAA∫ � (14)

Iy = x2 dAA∫ � (15)

Ixy = xy dAA∫ � (16)

Ic = x2 + y2( )dAA = Ix + Iy∫ � (17)

rc = Ic A = Ix A+ Iy A = rx
2 + ry2 � (18)

= 1

2
arctan

2Ixy
Ix Iy

α
−

−

�
(19)

Ix ,Iy = Ix + Iy( ) ± Ix Iy( )2 + 4Ixy2−1
2

1
2 � (20)

Analysis of the stresses resulting from torsion first 
require determination of the torsion axis, or shear center 
of the cross section. The shear center is the point (xo, yo) in 
the cross section where an applied shear force in any trans-
verse direction produces no torsion. The polar moment of 
inertia, Io, and radius of gyration, ro, about the shear center 
are similar to those about the centroid, but greater due to 
the offset of the shear center. The warping constant, Cw, is a 
measure of torsional stiffness due to warping, analogous to 
the moment of inertia, I, and bending stiffness due to flex-
ure. The St. Venant torsional constant, J, is a measure of 
torsional stiffness due to pure torsion.

The distribution of torsional stresses can be difficult to 
determine for a general cross section. Numerical methods 

Fig. 4.  Properties of general unsymmetrical cross section.
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utilizing finite elements of the cross section are useful for 
irregular shapes. Computer software is available for this 
task such as MSASect2 (2023), ShapeBuilder (2023), and 
Sectionproperties open-source code (2024). For thin-walled 
open sections, these properties are more readily calculable 
using sectorial coordinates (ωc, ωo, ωn) and integrating over 
distance s along the midlines of the cross-section elements 
of thickness t. These integrations are given as follows:

xo =
Iy cyt  ds0

l Ixy cxt ds0
l

Ix Iy Ixy
2

∫ ∫ ωω
−
−

�
(21)

yo =
Ix cxt  ds0

l Ixy cyt ds0
l

Ix Iy Ixy
2−

−ω ω∫ ∫

�
(22)

Io = x xo( )2 + y yo( )2 dAA = Ic + Axo2 + Ayo2∫ ⎡⎣ ⎤⎦−−
�

(23)

ro = Io A = rc
2 + xo2 + yo2 � (24)

Cw = n
2t ds0

l = o
2t  ds0

l A o
2ω ωω∫ ∫ − � (25)

c = c ds0
sω ρ∫ � (26)

o = o ds0
s∫ ρω � (27)

n = o o = o
1

A
ot ds0

lω ω ω ω ω− − ∫
�

(28)

J = 1

3
t3ds0
l∫

�
(29)

The variables ρc and ρo are the perpendicular distances to 
the element midline, measured from the centroid and shear 
center, respectively. The details of the sectorial coordinate 
calculations are given in several texts such as Timoshenko 
and Gere (1961), Yu (2000), and Liu et al. (2018).

Torsional equilibrium given by Equation  3 shows 
that the coefficient on ″ϕ  is the pure torsion elastic stiff-
ness GJ counteracted by the torsion geometric stiffness  
(Mx x +My y + Pro2ββ ), which is produced by the distribution 
of normal stresses over the cross section resulting from the 
applied forces Mx, My, and P. Based on the work by Glauz 
(2017), it can be shown that Mx x +My y = Mx x +My yβ β β β ; 
therefore, the β properties associated with the geometric 
x- and y-axes may be used with the moments about these 
axes. The properties βx and βy are distances given by Equa-
tions  30 and 31, equal to twice the orthogonal distances 
from the shear center (xo, yo) to the asymmetry point (xa, 
ya). The coordinates of the asymmetry point are calculated 
using integrations over the cross-sectional area without the 
need for thin-walled assumptions.

x −= 2 ya yo( )β � (30)

y = −2 xa xo( )β � (31)

ya =
UxIy UyIxy
2 IxIy Ixy

2( )−
−

�
(32)

xa =
Uy Ix Ux Ixy
2 Ix Iy Ixy

2( )−
−

�
(33)

Ux = y3 dAA + x2y dAA∫∫ � (34)

Uy = x3 dAA + y2x dAA∫∫ � (35)

For bending about a geometric axis, the properties 
required to calculate Mcr may be calculated using the pre-
ceding formulas without transforming coordinates to the 
principal axes. If the geometric axes are the principal axes, 
Ixy = 0 and the formulas for xo, yo, xa, and ya are simplified. 
For bending about a principal axis that is not the geometric 
axis, the necessary section properties may either be calcu-
lated as given above and the coordinates xo, yo, xa, and ya 
transformed to the rotated principal axes, or all the prop-
erties could be calculated using rotated principal axis x 
and y coordinates. Note, for a doubly symmetric section, 
the asymmetry point and the shear center coincide with the 
centroid, thus all the properties xo, yo, xa, ya, βx, and βy are 
equal to 0, and the formulas greatly simplify.

APPLICATION

The solution to the quadratic given by Equation 8 is shown 
below, where Mcr is the elastic critical moment about the x 
(major principal)-axis.
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An expanded form for Mcr is also shown in Equation 37, 
where Pt and Pey have been replaced by their respective 
expressions.
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Equation 36 has the advantage of compactness and com-
monality with variables used for column buckling; Equa-
tion 37 explicitly reveals the influence of unbraced length L 
and eliminates the ro property.

Two Mcr solutions are given by the positive and nega-
tive roots, where the positive root corresponds to a positive 
moment about the x axis—that is, compression on the posi-
tive y side of the x-axis (ey > 0, top flange in compression). 
Design codes typically provide the magnitude of the buck-
ling moment as a positive number; therefore, the negative 
root should be negated by multiplying through by −1. This 
makes the radical additive and changes the sign on the βx/2 
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term to positive for negative bending. The following form 
handles this with the Cs sign coefficient having a value of 
+1 for negative moment (ey < 0, bottom flange in compres-
sion) and −1 for positive moment (ey > 0, top flange in com-
pression); resulting in:

Mcr =CbPey Cs x
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+ x
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2
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2Pt
Pey
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or
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For bending about a non-principal x-axis, the elas-
tic lateral-torsional buckling moment is determined from 
Equation  9 with Pt and Pey replaced by their expressions 
from Equations 7 and 10, respectively:
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As will be discussed, Equation 40 applies to every cross 
section utilized in the AISC Specification. There is only one 
formula necessary for predicting the elastic lateral-torsional 
buckling moment of all steel sections under the assump-
tions previously stated.

It can be useful to determine the unbraced length L cor-
responding to any critical moment Mcr. Solving Equa-
tion 39 (principal axis bending) for L2 gives the following 
expression:
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The AISC Specification presumes that transitions in 
strength may occur when Mcr reaches a given moment—for 
example, Mr. Therefore, the length Lr where Mcr = Mr may 
be found by simple substitution into Equation 41:

	

Lr
2 =

Cb
2EIy
Mr

Cs
y

2
+ CbGJ

2Mr
+ Cs

x

2
+ CbGJ

2Mr

2

+ Cw

Iy

π β β⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
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� (42)

Calculating Mcr requires the section properties Iy, J, Cw, 
and βx. The Iy property is readily available for standard 
shapes and easily calculated for others, whereas the other 
properties are used less frequently and can be more dif-
ficult to calculate. The following subsections discuss these 
properties for different cases. Formulas are provided for 
many of these properties using midline dimensions and 
thin-walled assumptions, ignoring fillets. Full integration 
including fillets is available in software tools such as those 
previously mentioned and could be predetermined and tab-
ulated for standard shapes as is done currently for J and Cw 
in the AISC Manual (2023).

Bending about Axis of Symmetry

Figure 5 illustrates several common shapes bending about 
the axis of symmetry, which is both the geometric x-axis 
and the principal x-axis (Ixy = 0). This symmetry results 
in βx = 0 because the shear center and asymmetry point lie 
on the axis of symmetry (yo = ya = 0). The elastic buckling 

Fig. 5.  Sections bending about the axis of symmetry.
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equation then simplifies to the following, which is also 
given in a User Note of the AISC Specification (2022) Sec-
tion F2:

	
Mcr =Cbro PeyPt =Cb

L
EIy GJ +

2

L2
ECw

⎛
⎝⎜

⎞
⎠⎟

π π

�
(43)

For doubly symmetric I-sections (W, M, S, HP) and chan-
nels (C, MC), the torsional properties J and Cw are given in 
AISC Manual (2023) tables. For rectangular HSS, tee (WT, 
MT, ST), double-angle sections, and equal-leg angles, J is 
given in the AISC Manual tables, whereas Cw is much less 
significant and ignored in the AISC Specification. Thick 
flanges and large fillets increase Cw, which can be com-
puted using numerical methods.

Box Sections

Figure  6 shows a hollow rectangular box section with 
dimensional parameters and formulas for the required sec-
tion properties. This section is doubly symmetric, thus βx = 
0, and Equation 43 is applicable.

Mono-Symmetric I-Section

Figure 7 shows a general mono-symmetric I-section with 
dimensional parameters and formulas for the required sec-
tion properties. The Cs sign coefficient corresponds to the 
direction of the applied moment, but the sign of βx/2 is also 
important and must be calculated properly. The βx/2 value 
is negative when the larger flange is on the positive y-side 
of the x-axis for I-sections with typical proportions (t1 = t2 > 
tw, b2 < b1 < dc).

Tee Section

Figure  8 shows a general tee section with dimensional 
parameters and formulas for the required section properties. 

The βx/2 value is negative when the flange is on the posi-
tive y-side of x-axis for tee sections with typical proportions 
(t1 > tw, b1 < 2dc). The shear center is at the intersection of 
the flange and web, therefore Cw can be taken as 0.

Double Angle

Back-to-back angle sections are similar to tee sections but 
with an optional spacing between the vertical legs. Fig-
ure 9 shows general back-to-back angles with dimensional 
parameters and formulas for the required section proper-
ties. The βx/2 value is negative when the flanges are on the 
positive y-side of x-axis for typical double angle propor-
tions (2sc < bc < dc). The shear center is at the intersection 
of the flanges and axis between the vertical legs. For close 
spacings, Cw is small and can be taken as 0.

Single Angle

A common application for a structural angle is loading in 
the plane of the web with bending about the geometric axis 
perpendicular to the web. The more general form of the Mcr 
calculation given by Equation 40 is required, which incor-
porates the term (IxIy − Ixy

2)/Ix in place of Iy.
Figure  10 shows a general angle section with dimen-

sional parameters and formulas for the required properties, 
including a direct formula for the expression (IxIy − Ixy

2)/Ix. 
A simple formula is provided for βx/2, which is negative 
when the flange is on the positive y-side of the x-axis. The 
shear center is at the intersection of the angle legs; there-
fore, Cw can be taken as 0 (again assuming mid-line dimen-
sions and thin-walled assumptions, thus ignoring fillets and 
secondary warping that result in quite small, but non-zero 
Cw).

 

A = bc + tw( ) dc + tf( ) bc tw( ) dc tf( )− − −

Ix = bc + tw( ) dc + t f( )3 bc tw( ) dc tf( )31
12

1
12

− − −

Iy = dc + tf( ) bc + tw( )3 dc tf( ) bc tw( )3− − −1
12

1
12

J = 2bc
2dc

2

dc tw + bc tf

n,max =
bcdc dc tw bc tf( )
4 dc tw + bc tf( )ω

−

Cw = A n,max
2ω1

3

Fig. 6.  Box section properties.
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A = t1b1 + t2b2 + twdc

y1 = t2b2dc + twdc
2( ) A1

2
y2 = dc y1−

Ix = t1b1y12 + t2b2y22 + tw y1
3 + y23( )1

3

Iy = t1b1
3 + t2b2

3 = Iy1 + Iy2
1
12

1
12

J = b1t1
3 + b2t23 + dctw3( )1

3

yo = t1b1
3y1 t2b2

3y2( ) 12Iy−

ya =
t1b1y1 b1

2 +12y12( ) t2b2y2 b2
2 +12y22( )

+3tw y1
4 y2

4( )
1

24Ix

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎢ ⎥

⎥−

−

x 2 = ya yo−β

Cw = t1b13t2b23dc2 144Iy = Iy1Iy2dc2 Iy

Fig. 7.  Mono-symmetric I-section properties.

 

y1 =
twdc

2

2 t1b1 + twdc( )	
y2 = dc y1−

Ix = t1b1y12 + 1
3 tw y1

3 + y23( )

Iy = 1
12 t1b1

3

J = 1
3 b1t1

3 + dctw3( )	 Cw 0=

yo = y1

ya = t1b1y1 b1
2 +12y12( ) +3tw y1

4 y2
4( ) 24Ix⎡⎣ ⎤⎦−

x 2 = ya yo−β

Fig. 8.  Tee section properties.
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3

6

4bc + dc

bc + dc

⎛
⎝⎜

⎞
⎠⎟ 	

J = 2
3 bc + dc( )t3

Iy =
t
6
bc
3 + 3bc sc + bc( )2 + 3dcsc2⎡⎣ ⎤⎦

yo =
dc
2

2 bc + dc( )	
Cw 0=

ya =
bc
2 2bc + 3sc( ) bc + dc( ) 3bc

2dc
2

2dc bc + dc( ) 4bc + dc( )
−

x

2
= ya yo =

2bc
2 2bcdc dc

2( ) bc + dc( )+ 3bc2sc
2dc 4bc + dc( )

β − −
−

Fig. 9.  Double-angle section properties.
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⎛
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Ix Iy Ixy
2

Ix
= tbc

3

3

bc + dc
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− ⎛
⎝⎜

⎞
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Cw 0=

yo =
dc
2

2 bc + dc( )	
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bc bc
2 + 3dc2( )

8dc bc + dc( )
−

x

2
= ya yo =

4dc
2 bcdc + bc2

8dc

β − − −

Fig. 10.  Single-angle section properties.
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For bending about the principal x-axis, the properties  
Iy and βx/2 are required, which are determined as follows:

Iy = Ix + Iy( ) Ix Iy( )2 + 4Ixy2
1
2

−− 1
2 �

(44)

= arctan
2Ixy

Ix Iy

1
2

α
−
− �

(45)

x

2
= x

2
cos y

2
sin =

4dc
2 bcdc + bc2

8dc
cos

4bc
2 bcdc + dc2

8bc
sin− −−

−

−

αα

α α
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

βββ

�

For the special case of an equal leg angle, Iy = tbc
3/12, α = 

−π/4, and βx/2 = 0. The major principal axis is an axis of 
symmetry and the simpler form of Equation 43 can be used.

General Built-Up Section

For any general section built up of other shapes, most sec-
tion properties can be calculated from the properties of the 
individual shapes. Figure 11 shows an example built-up sec-
tion and the method of calculating many of the properties.

Calculating the torsion constant J as the summation of 
the individual J values is conservative and often accurate 
enough, but built-up sections that form fully enclosed hol-
low regions will have much larger J values. This and other 
torsional properties (shear center and warping constant) are 
more difficult to calculate for a general section. Software 
tools that utilize numerical methods are recommended 
for determining these properties. As with the single angle 
section, bending about the non-principal x-axis would use 
Equation 40.

� (46)

DISCUSSION OF AISC PROVISIONS

The elastic lateral-torsional buckling formulas in the AISC 
Specification (2022) are substantially based on Equa-
tion  39; however, many different formulas are given—
uniquely customized and approximated for all the different 
types of standard sections. The accuracy of these elastic 
buckling formulas and approximations is examined in this 
section. Note, the objective of the AISC Specification is 
to provide a reliable nominal moment; however, here only 
the elastic lateral-torsional buckling portion of the calcula-
tion is assessed, and thus, the differences do not necessarily 
equate to meaningful strength reliability and only to accu-
racy of the elastic expressions.

Bending about Axis of Symmetry

AISC Specification Equation F2–4 is shown here as Equa-
tion 47 converted from stress to moment, applicable to dou-
bly symmetric I-shapes and channels.

Mcr =
Cb

2ESx
L rts( )2

1+ 0.078 Jc

Sxho

L

rts

2π ⎛
⎝⎜

⎞
⎠⎟ �

(47)

rts
2 =

IyCw

Sx �
(48)

c	 = 1 for I-shapes,
 
c = ho

2

Iy
Cw  

for channels
�

(49)

Equation 47 is identical to Equation 43 but restructured 
to use new variables rts and c, which are themselves defined 
as functions of Iy, Cw, Sx, and ho. When the expressions for 
rts and c are substituted into this equation, the variables Sx 

 

Ix = y2 dAA = Ixi + Aiyi
2∑ ∑∫

Iy = x2 dAA = Iyi + Aixi
2∫ ∑ ∑

Ixy = xy dAA = Ixyi + Aixiyi∑ ∑∫

J = Ji (conservative)∑

ya =
Ux Iy UyIxy
2 IxIy Ixy

2( )−
−

Ux = y3 dAA + x2y dAA∫ ∫

Uy = x3 dAA + y2x dAA∫ ∫

Fig. 11.  Built-up unsymmetrical section properties.
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and ho factor out entirely. These additional variables are 
unnecessary and even misleading in suggesting what prop-
erties control lateral-torsional buckling. It should also be 
noted that lateral-torsional buckling for other section types 
bending about an axis of symmetry as shown in Figure 5 
are not addressed in Chapter F.

Mono-Symmetric I-Section

AISC Specification Equation F4-5 is shown here as Equa-
tion  50 converted from stress to moment, applicable to 
mono-symmetric I-shapes.

	
Mcr =

Cb
2ESx

L rt( )2
1+ 0.078 J

Sxho

L

rt

2⎛
⎝⎜

⎞
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π

�
(50)

This is similar to Equation  47 but restructured to use 
the additional variable rt, which is defined as a function 
of dimensional parameters of the section (i.e., the flange 
and a portion of the web). The square of rt is intended to 
approximate IyCw Sx combined with the influence of βx. 
However, this approximation can lead to significant error 
compared to Equation 39 as illustrated in Figure 12. The 
use of rt (and rts for doubly symmetric I-shapes) reverts to 
the pre-1986 concept of treating the compression flange as a 
column, which is no longer necessary given the availability 
of the relevant section properties or methods of calculating 
them. Further, the subtle difference between rt and rts can 
lead to additional error/confusion.

The AISC Specification Commentary (2022) includes 
the theoretically based Equation C-F4-3  incorporating Cw 
and βx and is equivalent to Equation 39. An accurate for-
mula for Cw and an approximation for βx are provided as 
functions of section depth and flange moments of inertia. 
Figure 12 shows this approach is more accurate than Spec-
ification Equation F4-5, although the βx approximation 
increases the error for larger flanges.

AISC Specification Section F5 also applies to I-shapes 
but with slender webs. Specification Equation F5-4 is shown 
here as Equation 51, which is the same as Equation 50 with 
the exclusion of torsional constant J, and is therefore a more 
conservative approximation of Mcr.

	
Mcr =

Cb
2ESx

L rt( )2
π

�
(51)

Square and Rectangular HSS and Box Sections

AISC Specification Equation F7-9 is shown here as Equa-
tion 52, applicable to closed doubly symmetric rectangular 
sections—that is, hollow structural sections (HSS) and box 
sections. This is equivalent to Equation  43 where substi-
tutions have been made for G = E/2.6, Iy = Ary

2, Cw = 0, 
and 2.6π  has been rounded up to 2. The assumption that 
Cw = 0 (i.e., negligible) is accurate for square HSS of uni-
form thickness, although Cw increases with aspect ratio for 
rectangular HSS. Torsional stiffness is dominated by pure 
torsion (GJ) for common HSS and box sections; hence, it 
is generally appropriate to ignore the negligible influence 
of Cw.

	
Mcr = 2ECb

JA

L ry �
(52)

Tees and Double Angles

AISC Specification Equation F9-10 is shown here as Equa-
tion 53, applicable to tees and double angles. Note that the 
bending coefficient Cb is not utilized in this equation as 
explained in the AISC Specification Commentary. For these 
sections, Cw is typically negligible and can be ignored. The 
new variable, B, in the AISC formula is a dimensionless 
value intended to represent x 2L( ) EIy GJβπ  by (crudely) 

0
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Fig. 12.  AISC Mcr equation accuracy for mono-symmetric I-sections.
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approximating βx as 0.9y2. The error introduced by this 
approximation is shown in Figure 13 for tee sections and 
Figure 14 for double-angle sections, as compared to Equa-
tion 39. For tee sections with b1/dc > 1.5 and double angles 
with b/d > 1, the error is significant. The error for double 
angles increases as the spacing between them increases.

Mcr =
1.95E
Lb

Iy J B + 1+ B2( )
	

(53)

B = ±2.3 y2
L

Iy
J �

(54)

Single Angle

AISC Specification Equation F10-4 is shown here as Equa-
tion  55, applicable to single angles bending about their 
major principal axis. This is equivalent to Equation  39, 
where substitutions have been made for G = E/2.6, Iy = Ary2, 

J = At2/3, and Cw = 0. Values for βx are provided in AISC 
Specification Commentary Table C-F10.1 as βw for com-
mon angle sizes independent of thickness. These values are 
accurate for b/t = 16, where b is the longer leg. For b/t other 
than 16, some small error is introduced.

	

Mcr = 1.125
CbEAryt

L
±4.4 xry

Lt
+ 4.4 xry

Lt

2

+1
β β⎡

⎣
⎢
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⎤

⎦
⎥
⎥

⎛
⎝⎜

⎞
⎠⎟
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(55)

AISC Specification Equations F10-5a and 5b are shown 
here as Equation 56, applicable to equal leg angles bend-
ing about the geometric x-axis. This is equivalent to Equa-
tion 40, where substitutions have been made for G = E/2.6, 
(IxIy − Ixy

2)/Ix = 2tbc
3/15, J = 2bct

3/3, Cw = 0, βx/2 = −bc/2, 
b = bc+t/2, and t = b/16. For b/t other than 16, some small 
error is introduced. AISC Specification Section F10 has no 
provisions for an unequal leg angle bending about a geo-
metric axis.

Fig. 13.  AISC Mcr equation accuracy for tee sections.

Fig. 14.  AISC Mcr equation accuracy for double-angle sections.
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Unsymmetrical Sections

AISC Specification Section F12 offers no formula to deter-
mine Mcr for an unsymmetrical section and must therefore 
be determined by analysis. It is important to note that Equa-
tion 40 is valid for unsymmetrical sections, so the task is 
simply to determine the required properties of the cross 
section. Although this can be difficult for the torsional 
properties, section property software tools are available to 
assist if necessary. Then a more rigorous elastic beam anal-
ysis is not necessary.

Recommendations

The AISC Specification (2022) presents several different 
formulas for calculating Mcr, with the use of additional 
variables and approximations. The authors assert that it 
would be more useful and instructive to provide one gen-
eral formula to the designer, applicable to any cross section, 
in the main body of the Specification—and provide design 
aids, or user notes where appropriate, for how the expres-
sion simplifies under certain assumptions (cross-section 
types). Specifically, we recommend that the Specification 
provide Equation 40 for the elastic lateral-torsional buck-
ling moment bending about the geometric x-axis, repeated 
here for clarity:
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(57)

For sections where the geometric axes coincide with 
the principal axes, Ixy = 0 and the buckling formula can be 
expressed as:

	

Mcr =Cb
2EIy
L2

Cs
x

2
+ x

2

2

+ GJL2

2EIy
+ Cw

Iy
 

π
π

ββ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝

⎞
⎠

�

(58)

If the x-axis is also an axis of symmetry, the shear cen-
ter and asymmetry point lie on the x-axis (yo = ya = 0), thus 
βx/2 = 0 and the buckling formula further simplifies to:
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L
EIy GJ +

2

L2
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π π⎛
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⎞
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(59)

The recommendation is to provide Equation  57, along 
with the simplified formulas for the special cases associ-
ated with Equations  58 and 59. For all the common sec-
tions covered in AISC Specification (2022) Chapter F, 
closed-form equations have been provided herein for cal-
culating all the necessary section properties (Ix, Iy, Ixy, J, 
Cw, yo, ya, βx/2), and most of these properties are tabulated 
in the AISC Manual (2023). The addition of βx/2  in the 
torsion property tables would fulfill the section properties 
requirements. For other sections, formulas can be derived, 
or software tools utilizing numerical methods may be used.

CONCLUSIONS

The elastic lateral-torsional buckling moment, Mcr, for a 
linear prismatic beam is a single formula applicable to any 
cross section. Properties of the cross section are required 
to calculate this buckling moment, including the St. Venant 
torsional constant, J, and warping constant, Cw. In addition, 
the less common asymmetry property βx is required and 
involves some care in calculation. For sections symmetric 
about the axis of bending, βx is zero, and the lateral-torsional 
buckling moment calculation is greatly simplified.

This article provides formulas for directly calculating 
βx for many standard shapes using centerline dimensions 
and thin-wall assumptions. This includes mono-symmetric 
I-sections, tee sections, double-angle sections, and 
single-angle sections. For sections bending about a non- 
principal axis, such as single angles or unsymmetrical 
built-up sections, the buckling formula is essentially the 
same except that the minor axis moment of inertia must be 
generalized to incorporate the product of inertia.

The AISC Specification provisions for lateral-torsional 
buckling consist of different formulas for the various types 
of standard shapes, where additional variables and formulas 
are used to approximate βx rather than calculating the actual 
values. These approximations introduce errors in the calcu-
lation of Mcr that can be unacceptably large. The removal of 
these approximations is recommended. The preferred alter-
native is to include the βx property in all the torsional prop-
erty tables in the next edition of the AISC Manual. Such 
tabulated values could be more accurately determined using 
direct integration of the cross-section properties to account 
for fillets and other features not incorporated in the typical 
mid-line, thin-walled properties. The section property for-
mulas provided herein would also be helpful to include in 
a future edition of the AISC Specification Commentary or 
the AISC Manual.

For unsymmetrical or built-up sections, the calculation 
of torsional properties and βx are more difficult. Software 
tools using numerical methods are available to calculate 
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these properties. In addition, though not detailed herein, 
finite element software can be used to model and calculate 
Mcr, not only for unique cross sections, but also for other 
conditions that affect elastic stability, such as pre-buckling 
displacements, nonuniform moment, unusual boundary 
conditions, shear stresses, and load height.
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