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Lateral-Torsional Buckling Modification Factors in  
Steel I-Shaped Members: Recommendations  
Using Energy-Based Formulations
NAMITA NAYAK, P.M. ANILKUMAR, and LAKSHMI SUBRAMANIAN

ABSTRACT

Lateral torsional buckling (LTB) is of concern in long-span flexural members, particularly in the negative flexure regions of continuous-span, 
steel I-shaped members and during construction. While the elastic critical LTB capacity of a simply supported I-shaped member subjected 
to uniform moment has a closed-form solution, most LTB modification factors for beams subjected to moment gradients in the literature 
are empirical and work well only for specific loading and boundary conditions. This paper investigates the suitability of the different LTB 
modification factors in literature and design specifications for various loading and boundary conditions, accomplished via comparisons with 
analytical solutions using the Rayleigh-Ritz method and numerical solutions from finite element analyses. The analytical LTB modification 
factors are derived for doubly symmetric I-shaped members with different combinations of ideal flexural and torsional boundary conditions 
(simply supported and fixed) and subjected to different loading scenarios. The validity of the LTB modification factors determined using the 
Rayleigh-Ritz method and other formulae in the literature are also assessed for realistic intermediate restraint conditions, which are neither 
fully pinned nor fixed, by examining laterally continuous beams. Demonstrating that current design specifications for elastic critical LTB 
modifications are overly conservative for beams with complete or partial warping fixity, the authors recommend practical and simple alter-
natives to design such beams.

Keywords: lateral torsional buckling, LTB modification factor, Rayleigh-Ritz method, warping restraints, continuous beams.

INTRODUCTION

This paper investigates the elastic critical lateral tor-
sional buckling (LTB) capacities of doubly symmetric, 

steel I-shaped members loaded at their centroidal axes, con-
sidering a spectrum of loading and boundary conditions. 
The classical solution for the elastic critical lateral torsional 
buckling capacity was first proposed by Timoshenko (1936) 
for simply supported, doubly symmetric, I-shaped members 
subjected to uniform moment, which is used worldwide as 
the elastic critical lateral torsional buckling capacity. Sev-
eral empirical formulae for LTB modification factors have 
since been developed to account for the enhancement in 
the flexural capacities of beams with nonuniform moments 
within the unbraced spans (such as Salvadori, 1956; Nether-
cot and Rockey, 1972; Kirby and Nethercot, 1979; Serna et 

al., 2006; Wong and Driver, 2010). Design codes and speci-
fications (BS 5950-1, 2000; AASHTO, 2020; AISC, 2022) 
employ these modification factors with or without elastic 
lateral effective length factors. The British standard recom-
mends using an effective length based on the restraint con-
ditions at the ends of the unbraced segments. While AISC 
Specification (2022) Equation F2-4 stipulates the use of a 
full unbraced length instead of an effective unbraced length 
by defining the unbraced length as the distance between 
lateral braces, its Commentary discusses using an effec-
tive length factor based on the end restraints as per Ziemian 
(2010). Similarly, the AASHTO Specification Commentary 
(2020) explores using an effective length factor in rehabili-
tation design or extraordinary circumstances, which may be 
calculated based on Nethercot and Trahair (1976) and Zie-
mian (2010). The recommendation of K = 1.0 in the Ameri-
can specifications (AASHTO, 2020; AISC, 2022) can lead 
to significantly conservative estimates of elastic critical 
LTB capacities of I-shaped members, whose ends are tor-
sionally fixed (both twist and warping are fixed). This is 
true irrespective of the in-plane flexural boundary condi-
tions. Such beams are practically found in cases such as 
rigid beam-column joints or in typical moment connection 
details. However, using an elastic effective length factor, 
K (as suggested in the AISC and AASHTO Specification 
Commentaries), along with the current equations for the 
LTB modification factors (Cb) may lead to inaccurate esti-
mates of the flexural capacities of I-shaped members.
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An inaccurate estimation of Cb, and thereby, the elastic 
critical buckling capacities, affects the entire beam design 
curve. For example, the AISC Specification beam design 
curve consists of three parts: the plateau for short unbraced 
lengths (Lb < Lp) with the maximum cross-section capac-
ity, an elastic LTB curve for long unbraced lengths (Lb > 
Lr), and an inelastic LTB equation that is a linear interpola-
tion between the maximum cross-section capacity and the 
elastic LTB curves. The inelastic and elastic LTB design 
capacities in the AISC and AASHTO Specifications are 
scaled by Cb for nonuniform moment loading conditions, 
limited by the maximum cross-section capacity. Such scal-
ing often leads to an extended plateau length several times 
larger than Lp, and a greatly enhanced inelastic LTB capac-
ity. Hence, an inaccurate estimation of Cb may result in 
either overly conservative or unconservative estimates of 
the beam capacities in a significant portion of the beam 
design space. Subramanian and White (2017a) also noted 
that the extended plateau resulting from scaling the flexural 
capacity by Cb in the inelastic LTB region tends to overes-
timate the true strengths even for beams which are free to 
warp at their ends (K = 1.0). Although the available litera-
ture provides numerous formulations for estimating Cb, the 
existing equations are generally fit to the results of numeri-
cal parametric studies for specific loading and boundary 
conditions.

The objective of this study is to evaluate the appropri-
ateness of the existing Cb factors in design specifications 
and literature for ideal boundary conditions, including fork 
boundary conditions (flexurally and torsionally simply 
supported), fully fixed (flexurally and torsionally) condi-
tions, and flexurally simply supported and torsionally fixed 
boundary conditions. More practical conditions, including 
laterally continuous beams, are also subsequently examined. 
The loading conditions include linear moment gradients, a 
concentrated load at mid-span, and uniformly distributed 
loads. The available empirical equations are compared with 
analytical solutions using the Rayleigh-Ritz method and 
finite element (FE) simulations. The Rayleigh-Ritz method 
is an energy-based approach, wherein the LTB capacity 
is obtained by minimizing the total potential energy of 
the system. Although the energy method has been previ-
ously used by others (Timoshenko, 1936; Galambos and 
Surovek, 2008; Yoo and Lee, 2011) to calculate the elas-
tic critical buckling moments, those studies were limited to 
simply supported I-shaped members and cantilever beams 
subjected to concentrated loads. This work seeks to estab-
lish accurate formulations for predicting the elastic critical 
moment of steel I-shaped members for standard loading and 
end-restraint conditions, while also defining the specific 
conditions for which the available commonly used equa-
tions are most suitable. The results from the Rayleigh-Ritz 
method are also compared with FE test simulations. The 

comparisons with the literature and FE simulations also 
help identify practical design scenarios where one must 
exercise caution when using the existing equations in the 
design specifications and the recommendations in the com-
mentaries for LTB resistances.

Following the studies on beams with ideal boundary 
conditions, this paper looks at practical design conditions 
with laterally continuous beams. In beams with intermedi-
ate lateral braces, the critical lateral spans are restrained 
by their adjoining segments. A correct estimate of the flex-
ural capacity of such beams depends on the effective length 
of the critical unbraced span and the appropriate Cb fac-
tor. While the effective lateral length factor, K, for the ideal 
boundary conditions, may be taken as 1.0 for torsionally 
simply supported conditions, and 0.5 for torsionally fixed 
conditions, the appropriate K for laterally continuous beams 
is determined using other methods.

White (2008) and White and Jung (2008) briefly 
described the evolution of the AISC Specification beam 
design equations, which are largely a fit to a vast body of 
experimental data. They explained that the current coef-
ficient in the equation for Lp (AISC Specification Equa-
tion F4-7) may be taken as devoid of any implicit effective 
length factors. They further cautioned that employing K = 
1.0, as outlined in the AISC Specification, is conservative 
for several design conditions and recommended using the 
effective length proposed by Nethercot and Trahair (1976) 
and Galambos (1998). Nethercot and Trahair first pro-
posed a method to estimate the elastic effective length fac-
tor for laterally continuous beams, akin to the method for 
braced columns. They stipulated that the restraints to the 
critical span from the immediately adjoining segments are 
functions of the loading in both the critical and restrain-
ing segments, and the far-end boundary conditions. Later, 
Subramanian et al. (2018) discussed the effect of inelastic-
ity in the critical segments, leading to a consideration of 
Kinelastic in interpreting experimental test data. They dem-
onstrated an improved reliability when the plateau length, 
Lp, was reduced to a coefficient of 0.63 instead of 1.1, and 
the anchor point for the elastic stresses, FL, was decreased 
to 0.5Fyc, as recommended in Kim (2010) and Subramanian 
and White (2017b).

More recently, John and Subramanian (2019) proposed 
modifications to the original method by Nethercot and 
Trahair (1976), noting that the restraint also depends on 
whether the adjoining segment braces the critical span at 
the location of the maximum or the minimum moment 
within the critical span. Additionally, John and Subrama-
nian discussed situations where the farther segments fur-
ther influence the restraints from the spans immediately 
adjoining the critical span. They also observed conditions 
where the critical lateral span may be identified incor-
rectly. This paper examines the various Cb formulations for 
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IyCw
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where
Cb =  LTB modification factor for nonuniform moment 

diagrams

Lb = lateral unbraced length, in.

Sx =  elastic section modulus taken about the major axis 
of the cross section, in.3

c = 1.0 for doubly symmetric I-sections

ho = distance between the flange centroids, in.

Table 1 provides expressions for LTB modification factors 
from the literature, commonly derived from a fit to the data 
from finite element or finite difference methods for moment 
gradients. These equations are derived for specific loading 
conditions but are, however, usually applied to all loading and 
boundary conditions. For example, the equation proposed by 
Salvadori (1956), incorporated in the AASHTO Specifica-
tion, applies to members with linear bending moment dia-
grams between the two braced points. While this equation 
is simple to use and yields good results for bending in sin-
gle curvature, it is significantly conservative when applied 
to beams with double curvature. Similarly, Nethercot and 
Rockey (1972) provided the LTB modification factors for 
beams with warping-fixed boundary conditions subjected to 
a concentrated load at mid-span and a uniformly distributed 
load (Ziemian, 2010); however, the in-plane boundary con-
ditions in the warping-fixed cases were not specified.

Serna et al. (2006) found that the equations provided 
in the AISC Specification and the British standard (BS 
5950-1, 2000) are unconservative for warping-fixed condi-
tions. They proposed an alternate equation, where the LTB 
modification factor is a function of the torsional boundary 
conditions. Wong and Driver (2010) opined that the equa-
tion proposed by Serna et al. (2006) overestimates the elas-
tic critical LTB capacity, and they proposed the Cb factor 
presented in Table 1. The equation developed by Wong and 
Driver (2010) fits the numerical data considering the effect 
of moment gradients in beams whose ends are free to warp.

The British standard BS 5950-1 (2000) employs a LTB 
modification coefficient similar to the AISC Specifica-
tion with different coefficients for the bending moments at 
quarter-, mid-, and three-quarter span locations. The Brit-
ish standard further recommends using an effective length 
factor, K, of 1.0 and 0.7 for warping-free and fixed bound-
ary conditions, respectively. While the AISC Specification 
recommends using the Cb factor (Equation F1-1) proposed 
by Kirby and Nethercot (1979), several other Cb factors 
are presented in the Commentary. These equations include 
Wong and Driver’s (2010) equation (AISC Specification 
Commentary Equation  C-F1-2b) for nonlinear moment 
diagrams, and the Cb factor proposed by Yura and Helwig 

laterally continuous beams by applying the effective length 
factors from both the Nethercot and Trahair (1976) method 
and the modified methods suggested by John and Subrama-
nian (2019).

These exhaustive comparisons of the LTB modification 
factors for ideal boundary conditions and laterally continu-
ous beams with partial restraint conditions lead the authors 
to recommend design methods better suited for a broader 
range of beam design conditions.

EVALUATION OF Mcr USING EXISTING DESIGN 
CODES AND EMPIRICAL FORMULAE

Timoshenko (1936) derived the elastic critical LTB capac-
ity for flexurally and torsionally simply supported, dou-
bly symmetric, I-shaped members subjected to a uniform 
moment. The AISC Specification Commentary discusses 
using an elastic effective length instead of the full unbraced 
length to enhance the elastic critical buckling moment by 
using the method prescribed in Ziemian (2010), which con-
siders the lateral and torsional boundary conditions in the 
beams. This modified elastic critical LTB capacity, Mocr, 
may be written as given in Equation 1 by considering the 
effective length KL for the different flexural and torsional 
boundary conditions. This basic critical moment equation 
is typically modified for different loading and boundary 
conditions by multiplying the expression for Mocr with the 
LTB modification factor, Cb. Some of the commonly used 
expressions for Cb are listed in Table 1.

 
Mocr =

2EIy
KL( )2

2EIw
KL( )2 +GJππ ⎛

⎝⎜
⎞
⎠⎟  

(1)

where
E = Young’s modulus of elasticity, ksi

G = elastic shear modulus, ksi

Iy = minor axis moment of inertia, in.4

Iw = warping constant, in.4

J = St.-Venant torsional constant, in.4

L = lateral unbraced length, in.

The American specifications use Equation 2 (AISC Speci-
fication Equation  F2-4 and AASHTO Specification Equa-
tion A6.3.3) to estimate the elastic critical LTB stress of an 
I-shaped member. This equation is similar to Timoshenko’s 
solution for a flexurally and torsionally simply supported, 
doubly symmetric, I-shaped member (with K  = 1.0) sub-
jected to uniform moment.

 

Fcr = Cb
2E
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⎠⎟

π

 

(2)



144 / ENGINEERING JOURNAL / THIRD QUARTER / 2024

Table 1. Review of LTB Modification Factors, Cb, from the Literature

Source Equation Remarks

Salvadori (1956)  
AISC Specification (2022) 
Equation C-F1-1  
AASHTO Specification 
(2020)* Equation A6.3.3.7

Cb = 1.75 + 1.05
M1

M2
+ 0.30

M1

M2

2

2.30
⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟ ≤

M1—smaller moment at the end of the 
unbraced length
M2—larger moment at the end of the 
unbraced length
The ratio of M1 to M2 is positive for double 
curvature and negative for single curvature 
bending

Nethercot and Rockey 
(1972)  
Ziemian (2010)

1.35a

1.13b

Cb = 1.92 0.42
L

EIw
GJ

2

+ 1.85
L

EIw
GJ

ππ−
⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟

c

Cb = 1.64 0.41
L

EIw
GJ

2

+ 1.77
L

EIw
GJ

⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟− ππ

d

a  Flexurally and torsionally simply 
supported with a concentrated load at 
mid-span

b  Flexurally and torsionally simply 
supported with a uniformly distributed 
load

c  Flexurally and torsionally fixed with a 
concentrated load at mid-span

d  Flexurally and torsionally fixed with a 
uniformly distributed load

Kirby and Nethercot (1979)  
(AISC Specification 
Equation F1-1)

Cb = 12.5Mmax

2.5Mmax + 3.0MA + 4.0MB + 3.0MC

Mmax—absolute value of the maximum 
moment in the unbraced segment
MA, MB, MC—absolute values of the 
moments at the quarter-, mid-, and three-
quarter points of the unbraced segment

British standard 
(BS 5950-1, 2000)

Cb = Mmax

0.20Mmax + 0.15M2 + 0.50M3 + 0.15M4
2.27≤

Mmax—absolute value of the maximum 
moment in the unbraced segment
M2, M3, M4—absolute values of the 
moments at the quarter-, mid-, and three-
quarter points of the unbraced segment

Serna et al. (2006)
Cb =

kA1 +
1 k( )

2
A2

2

+
1 k( )

2
A2

A1

−−⎡

⎣⎢
⎤

⎦⎥
⎢ ⎥

A1 = Mmax
2 + 9kM2

2 + 16M3
2 + 9kM4

2

17 + 18k( )Mmax
2

A2 = Mmax + 4M1 + 8M2 + 12M3 + 8M4 + 4M5

37Mmax

k = 1 (lateral bending and warping are free)

= 0.5 (lateral bending and warping 
are prevented)  

Mmax—maximum bending moment
M1, M5 are the bending moment at brace 
locations
M2, M3, M4—moments at the quarter-, 
mid-, and three-quarter points of the 
unbraced segment

Wong and Driver (2010)  
(AISC Specification 
Commentary Equation 
C-F1-2b)

Cb = 4Mmax

Mmax
2 + 4MA

2 + 7MB
2 + 4MC

2
2.50≤

Mmax—absolute value of the maximum 
moment in the unbraced segment
MA, MB, MC—absolute values of the 
moments at the quarter-, mid-, and three-
quarter points of the unbraced segment

* The moment modification factor in AASHTO Specification (2020) is expressed in the form of compression flange stresses at the brace locations.
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And the potential of external force is equal to:

 
V = 1

2
Mx 2 u( )

0

L
dz∫ ϕ ″⎡⎣ ⎤⎦

 
(5)

The total potential of the system can hence be written as:

 

= 1

2
EIy u( )2 + EIw ( )2 +GJ ( )2

0

L
dz

+ 1

2
Mx 2 u( )

0

L
dz⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦∏ ϕϕ

ϕ

″ ″

″

′∫

∫
 

(6)

where
Mx =  bending moment about the major principal axis

u′′ =  second derivative of the lateral deflection of the 
centroidal axis u

ϕ′ =  first derivative of the twist ϕ
ϕ′′ =  second derivative of ϕ

The potential energy is a function of the loading condi-
tions (the bending moment M) and the unknown coefficients 
of the displacement functions (u and ϕ). These unknowns are 
calculated by applying the Rayleigh-Ritz technique to Equa-
tion 6 by minimizing the system’s potential energy (δΠ = 0).

Derivation of the elastic critical LTB capacity of a 
simply supported beam with fork boundary conditions 
subjected to uniform moment

The elastic critical LTB capacity for the doubly symmet-
ric I-shaped member in Equation  1 is derived using the 
Rayleigh-Ritz approach described here.

The boundary conditions for a simply supported beam 
are given by

 u = u = = 0 at z == 0 and z = L″″ ϕ ϕ  (7)

The assumed displacement functions satisfying the above 
boundary conditions are:

 
u = Asin

z

L
, = Bsin

z

L

ππ ϕ
 

(8)

(AISC Specification Commentary Equation C-F1-5) (Yura, 
1995; Yura and Helwig, 2010) for beams with reverse curva-
ture continuously braced at their top flanges.

While the AISC Specification offers several equations 
that consider the moment gradient and the effect of bracing, 
there needs to be more discussion on the range of support 
and loading conditions for which the equations are appli-
cable. Given the differences in the existing Cb formulae, 
particularly for end conditions with warping restraints, a 
general theoretical model based on the Rayleigh-Ritz for-
mulation is presented in this paper to assess the accurate 
Cb for each loading and boundary condition. The frequent 
assertion in literature that using the Cb expressions derived 
for warping-free conditions is conservative when used in 
beams with warping restraint is also examined in this paper.

ELASTIC CRITICAL LTB CAPACITY USING  
THE RAYLEIGH-RITZ FORMULATION

This section provides the elastic critical LTB solutions 
obtained using the Rayleigh-Ritz method for beams with 
ideal boundary conditions subjected to different load-
ing conditions. The standard case of a doubly symmetric 
I-beam with fork boundary conditions (flexurally and tor-
sionally simply supported) subjected to uniform moments is 
shown in Figure 1. The traditional assumptions while deriv-
ing the LTB equation (Timoshenko, 1936) for I-shaped 
members are not stated here for brevity.

According to the principle of virtual work, the total 
potential, ∏, of a system may be determined by summing 
the elastic energy of the system, U, and the potential of 
the external forces, V. The total potential of the system is 
constant.

 =∏ U +V  (3)

The total elastic strain energy of the beam is given by:

 
U = 1

2
EIy u( )2 + EIw ( )2 +GJ ( )2

0

L
dz⎡⎣ ⎤⎦″ ″∫ ϕ ϕ′

 
(4)

Mo Moz

v
L

y

z

u
Lx

ϕ

vx

u

 (a) In-plane displacement (b) Out-of-plane displacement (c) Twist of  
   cross section

Fig. 1. Displacement of a simply supported doubly symmetric I-shaped member subjected to uniform moment.
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All critical moments are observed to be multiples of the 
basic critical moment, Mocr, in Equation 1 with the corre-
sponding K listed in Table 3 (1.0 for torsionally simply sup-
ported conditions and 0.5 for torsionally fixed conditions). 
The LTB modification factor, Cb, presented in Table 3, is 
the ratio of Mcr to Mocr. The derivations for several cases 
listed in Table 3 are presented in Nayak et al. (2023). The 
derivations for loading types 6 and 9 are also presented in 
the appendix of this paper. The derivations for other cases 
are mathematically repetitive and can be obtained using the 
shape functions and boundary conditions listed in Table 2. 
They are not shown in this paper.

COMPARATIVE STUDIES WITH NUMERICAL 
RESULTS AND THE LITERATURE

The elastic critical LTB capacities calculated using the 
LTB modification factors derived in Table 3 are compared 
with the results from the elastic buckling analyses using FE 
simulations in SABRE2 (White et al., 2021). SABRE2 is a 
structural analysis and design software that employs beam 
elements with 7 degrees of freedom at each node, includ-
ing the warping degree of freedom. The solutions from 
SABRE2 are also verified with several studies using elastic 
buckling analyses in ABAQUS (2022). Following a mesh 
convergence study, each beam unbraced segment is mod-
eled with eight elements. The boundary conditions used are 
presented in Figure 2.

The results for two wide-flange sections (W16×40 and 
W30×90) of 6.0 m (19 ft 8 in) length are presented in this 
paper for the validation studies. Table  4 compares the 
critical elastic critical LTB capacities calculated using 
the LTB modification factors, Cb, established using the 
Rayleigh-Ritz method, Mcr,energy, and the elastic critical 
LTB capacities from the finite element analyses (FEA), 
Mcr,FEA, for the two sections for the 16 different cases that 
make use of results from the nine loading types chosen in 
Table 2. The results for a broader range of wide-flange sec-
tions are similar and do not add value to this paper. Cases 
1–11 in Table 4 are flexurally and torsionally simply sup-
ported (twist restrained, warping free), while Cases 12–14 
are flexurally simply supported in-plane, but torsionally 
fixed (twist and warping restrained). Cases 15 and 16 are 
modeled with both flexurally and torsionally fixed bound-
ary conditions.

Figure 3 compares the elastic critical LTB capacities esti-
mated using the empirical Cb equations given in the AISC 
Specification and in BS 5950-1 and those obtained from 
the energy method, with the elastic critical LTB capaci-
ties obtained from the FE simulations for the W16×40 and 
W30×90 sections, respectively. The values reported for the 
energy method employ K = 0.5 for conditions with warping 
fixity (Cases 12–16). In reporting the values for the AISC 

The bending moment at any section along the length of the 
beam is Mx = M.

The total potential energy calculated using Equation 6 is 
given by

 
=U +V =

4EIyA
2

4L3 +
4EIwB

2

4L3 +
2GJB2

4L

2MAB

2L
Π

ππππ −

 (9)

Differentiating the total energy with respect to the 
unknowns A and B, the following equations are obtained.

 A
=

4EIyA

2L3

2MB

2L
− ππΠ

∂
∂

 
(10)

 B
=

4EIwB

2L3 +
2GJB

2L

2MA

2L
Π πππ

−
∂
∂

 
(11)

The total potential being constant, Equations 10 and 11 
are equated to zero.

2EIy
L2 M

M
2EIw
L2 +GJ

A

B
= 0

−

−
π

π

⎪
⎨
⎪

⎪⎧ ⎫
⎬
⎪⎩ ⎭

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎢ ⎥
⎢ ⎥

⎥⎢ ⎥

The solution for the elastic critical lateral torsional 
moment, Mcr, can be obtained by evaluating the determi-
nant of this matrix. Equation 12 is the same as the classical 
buckling solution derived by Timoshenko (1936), with an 
effective length factor, K, of 1.0.

 
Mcr =

2EIy
L2

2EIw
L2 +GJππ ⎛

⎝⎜
⎞
⎠⎟  

(12)

The different loading and boundary conditions studied in 
this paper are listed in Table 2. The in-plane boundary con-
ditions and loading are illustrated through the images, and 
the warping restraint is described in the text. The transverse 
loads are applied at the centroidal axes, precluding instabil-
ity from load-height effects.

Table  3 lists the elastic critical LTB capacities for the 
nine different loading and ideal boundary conditions 
listed in Table 2. These expressions are derived using the 
energy method. The cross-sectional twist is restrained at 
both beam ends in all cases in this paper. The assumed dis-
placement functions listed in the last column of Table 2 sat-
isfy the corresponding boundary conditions. The number 
of terms shown in the displacement functions is based on 
convergence studies for each case. The critical buckling 
load or moment is thus obtained by minimizing the poten-
tial energy given by Equation 6, using the same procedure 
outlined for a beam subjected to uniform moment (loading 
type 1).
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Table 2. Assumed Displacement Functions for the Ideal Loading and Boundary Conditions Studied in This Paper

Loading 
Type Loading Condition

Boundary Condition

Displacement Functions
In-Plane 
Flexural Warping

1
M M Simply 

supported
Free

u = Asin
z
L

π

= Bsin
z
L

πϕ

2a
M βM Simply 

supported
Free

u = Asin
z
L

+Bsin
2 z
L
ππ

= Csin
z
L

πϕ

3b
P Simply 

supported
Free

u = Asin
z
L

+Bsin
2 z
L
ππ

= Csin
z
L

πϕ

4b w Simply 
supported

Free

u = Asin
z
L

+Bsin
2 z
L
ππ

= Csin
z
L

πϕ

5
M M Simply 

supported
Fixed

u = A 1 cos
2 z
L
π−⎛

⎝
⎞
⎠

πϕ = B 1 cos
2 z
L

−⎛
⎝

⎞
⎠

6b
P Simply 

supported
Fixed

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ −− ⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
π

ϕ −⎛
⎝

⎞
⎠

7b w Simply 
supported

Fixed

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ −− ⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
πϕ −⎛

⎝
⎞
⎠

8b P
Fixed Fixed

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ −− ⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
πϕ −⎛

⎝
⎞
⎠

9b w 
Fixed Fixed 

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ

−−⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
π

−ϕ ⎛
⎝

⎞
⎠

a β is positive for single curvature and negative for reverse curvature.
b The transverse loads are applied at the centroidal axes.
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Table 3. Elastic Critical LTB Capacities and LTB Modification Factor  
Obtained for the Different Cases Considered in Table 2 Using the Energy Method

Loading 
Type K Elastic Critical LTB Capacity Cb Mcr Mocr

1 1.0 Mcr =
2EIy
L2

2EIw
L2 +GJ

π π⎛
⎝
⎜

⎞
⎠
⎟ 1.00

2 1.0 Mcr = 1

0.50 1+( ) 2 + 0.18 1( ) 2

2EIy
L2

2EIw
L2 +GJ

β β−

ππ ⎛
⎝
⎜

⎞
⎠
⎟

⎡⎣ ⎡⎣⎤⎦ ⎤⎦

1

0.50 1+( ) 2 + 0.18 1( ) 2⎡⎣⎡⎣ ⎤⎦⎤⎦ ββ −

3 1.0 Mcr = 1.42
2EIy
L2

2EIw
L2 +GJππ ⎛

⎝
⎜

⎞
⎠
⎟ 1.42

4 1.0 Mcr = 1.15
2EIy
L2

2EIw
L2 +GJ

⎛
⎝
⎜

⎞
⎠
⎟

ππ
1.15

5 0.5 Mcr =
2EIy

0.5L( )2

2EIw
0.5L( )2 +GJππ ⎡

⎣
⎢

⎤

⎦
⎥ 1.00

6 0.5 Mcr = 1.07
2EIy

0.5L( )2

2EIw
0.5L( )2 +GJππ ⎡

⎣
⎢

⎤

⎦
⎥ 1.07

7 0.5 Mcr = 0.97
2EIy

0.5L( )2

2EIw
0.5L( )2 +GJππ ⎡

⎣
⎢

⎤

⎦
⎥ 0.97

8 0.5 Mcr = 1.08
2EIy

0.5L( )2

2EIw
0.5L( )2 +GJππ ⎡

⎣
⎢

⎤

⎦
⎥ 1.08

9 0.5 Mcr = 1.77
2EIy

0.5L( )2

2EIw
0.5L( )2 +GJππ ⎡

⎣
⎢

⎤

⎦
⎥ 1.77

 
z

x

y

a

Loading type 1-4
at shear center, a
ux = uy = uz = 0 (pin end)
θz = 0 (pin end)
ux = uy = 0 (roller end)
θz = 0 (roller end)
warping free

Loading type 5-7
at shear center, a, at the ends
ux = uy = uz = 0 
θy = θz = 0 
warping fix

Loading type 8-9
at shear center, a, at the ends
ux = uy = uz = 0 
θ θ θx = y = z = 0 
warping fix

Fig. 2. Boundary conditions used in FE simulations.
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warping-fixed support conditions. However, their direction 
on the appropriate effective length to use in their equations 
is ambiguous. Hence, an effective length factor of 1.0 is 
used here, even for cases with warping-fixed end conditions 
in their expressions for Cb. Using the full lateral unbraced 
length (K  = 1.0) rather than an effective lateral length  
(K  = 0.5) in their equations yields more realistic results, 
preventing grossly unconservative calculations. However, 
in other comparative studies, the critical moment is esti-
mated using K = 1.0 for flexurally and torsionally simply 
supported boundary conditions and K = 0.5 for torsionally 
fixed end conditions irrespective of the in-plane flexural 
boundary conditions.

Specification, a value of K = 1.0 is used in all cases, as per 
the current definition of Lb. Additionally, the AISC Speci-
fication Cb is also used with the correct effective length 
factor K = 0.5, for Cases 12–16, as proffered in the AISC 
Specification Commentary. Similarly, an effective length 
factor of 0.7 is employed in estimating the elastic critical 
LTB capacity while using BS 5950-1 for warping-fixed 
conditions.

Figure 4 compares the elastic critical LTB capacities esti-
mated using the empirical equations in the literature and the 
energy-based solutions, with the elastic critical LTB capaci-
ties obtained from the FE simulations for the two sections. 
Nethercot and Rockey’s (1972) equations were derived for 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Case study number

BS 5950
AISC 2022,     = 1.0
AISC 2022,     = 0.5
Energy method

K
K

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
cr

 /M
cr

,F
EA

Case study number
 (a) W16×40 (b) W30×90

Fig. 3. Comparison of Mcr obtained from FEA with the Rayleigh-Ritz method and  
equations given in the design standards for 6 m (19 ft 8 in) long I-shaped members.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Case study number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
cr

/M
cr

,F
EA

Case study number

Salvadori 1956
Nethercot & Rockey 1972,    =1.0
Serna et al. 2006
Wong & Driver 2010
Energy method

K  

 (a) W16×40 (b) W30×90

Fig. 4. Comparison of Mcr obtained from FEA with the Rayleigh-Ritz method  
and empirical equations in literature for 6 m (19 ft 8 in) long I-shaped members
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particularly true for the beams subjected to reverse 
curvature (Cases 6–9  in Figure  3). The elastic critical 
LTB capacity of a simply supported beam, calculated 
using the British standard (BS 5950-1, 2000) and the 
AISC Specification (2022) equations are nearly equal, 
and the maximum conservative strength estimations are 
0.81 and 0.80 times Mcr,FEA, respectively, for Case 8 with 
an end moment ratio (β) of −0.75.

The following conclusions are drawn from Figures  3 
and 4:

1. The calculated elastic critical LTB capacities for 
beams in the design code and specifications are 
typically conservative for torsionally simply supported 
end conditions, and the conservatism increases with 
an increase in the gradation of the moment. This is 

Table 4. Comparison of the LTB Capacities Obtained from the Energy Method with FE Solutions

Case 
Study No.

Boundary Condition

Bending Moment Diagram

W16××40 W30××90

Flexure Warping Mcr,FEA//Mcr,energy Mcr,FEA//Mcr,energy

1
Simply 

supported
Free

β = +1

0.97 0.98

2
Simply 

supported
Free

β = +w

0.97 0.98

3
Simply 

supported
Free

β = +2

0.97 0.98

4
Simply 

supported
Free

β = +4

0.96 0.97

5
Simply 

supported
Free

β = 0

0.95 0.97

6
Simply 

supported
Free

β = −4

0.93 0.95

7
Simply 

supported
Free

β = −2

0.92 0.94

8
Simply 

supported
Free

β = −w

0.94 0.96

(Table 4 continues on the next page)
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the true K of 0.5 for warping fixed conditions in the AISC 
Specification, such as in conditions with rigid beam-
column joints, the strengths may be unconservatively 
estimated by up to 1.8 times the true strengths.

3. Figures 4(a) and (b) show that Salvadori’s equation, 
although derived for linear moment gradients, 
conservatively estimates the elastic critical LTB 
capacity with a ratio of Mcr/Mcr,FEA equal to 0.82 for 
Case  8 (with β equal to −0.75). Wong and Driver’s 
equation underestimates the strength, with the smallest 
value of Mcr/Mcr,FEA equal to 0.85 for simply supported 
beams with reverse curvature bending (Cases 8 and 9). 
Conversely, Wong and Driver’s equation overestimates 
the strength in beams with warping-fixed end conditions, 

2. The equations in the design code and specifications are 
overly conservative for beams with warping fixed at 
both beam ends (by 40–70%), when the comparisons use 
a K of 0.7  in the British standard and 1.0  in the AISC 
Specification equations. The British standard predicts 
elastic critical LTB capacities as low as 0.6 times those 
of the FE solutions for flexurally and torsionally fixed 
beams subjected to a uniformly distributed load (Case 
16 in Figure 3). Similarly, the AISC Specification elastic 
critical LTB capacity is significantly conservative for 
beams with warping-fixed conditions (such as Case  15 
in Figure  3), with a strength underestimation of up to 
0.4−0.5 times the true solutions.

 On the other hand, if the comparison is made by including 

Table 4. Comparison of the LTB Capacities Obtained from the Energy Method with FE Solutions (continued)

Case 
Study No.

Boundary Condition

Bending Moment Diagram

W16××40 W30××90

Flexure Warping Mcr,FEA//Mcr,energy Mcr,FEA//Mcr,energy

9
Simply 

supported
Free

β = −1

0.96 0.97

10
Simply 

supported
Free 0.93 0.94

11
Simply 

supported
Free 0.95 0.96

12
Simply 

supported
Fixed 0.98 0.98

13
Simply 

supported
Fixed 0.98 0.98

14
Simply 

supported
Fixed 0.99 0.99

15 Fixed Fixed 0.97 0.97

16 Fixed Fixed 0.98 0.98
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while exploiting the enhanced strengths from smaller 
effective lengths, and will be examined subsequently in 
this paper for laterally continuous beams.

6. Table  4  indicates that the LTB capacities estimated 
using the Rayleigh-Ritz method (denoted as the energy 
method) compare well with the FE results, with a 
maximum overestimation of 9% of Mcr,FEA for a simply 
supported beam with moment gradient factor β equal 
to −0.5 (Case  7). These studies show that the energy 
formulations are most beneficial when applied to simply 
supported beams subjected to reverse curvature and for 
beams with warping fixed at their ends.

Impact of Cb on the limiting plateau length and the 
inelastic flexural strength

Having shown that the AISC Specification elastic critical 
LTB capacity is either overly conservative or unconserva-
tive for warping-fixed conditions depending on the assumed 
K, the import of applying the AISC Specification equations 
using K = 1 and 0.5, and Cb as per Equation F1-1 on the 
inelastic flexural strength and the plateau length is now 
examined. Figures 5(a) and (b) plot the normalized design 
strengths (Mn/Mp) for the flexurally and torsionally fixed 
beams with a concentrated load at the mid-span (Case 15, 
Table 4), and a uniformly distributed load (Case 16, Table 4) 
for the W16×40 section. The cross-section Lp is 1.7 m (5 ft 
7 in), and Lr = 7.0 m (23 ft). These figures show the AISC 
Specification design strengths modified with the Cb as per 
Equation F1-1 and K = 1.0 and 0.5, and the design strengths 
estimated using the Cb factor derived using the energy 
method with a K = 0.5. On the other hand, the equations for 
Cb in the AASHTO Specification (Equations  6.10.8.2.3-7 
and A6.3.3.7) recommend using an LTB modification fac-
tor of unity for cases where the compression flange stresses 
or the bending moments at the braced locations are zero. 
The AASHTO Specification commentary discusses that 
this would be conservative only in rare cases (in bridge 
girders) where the span is simply supported with no inter-
mediate cross-frames. Figure 5 shows that using the AISC 
Specification Cb and K = 1.0 for warping fixed conditions 
is already on the safe side. Hence, the comparative study 
only includes the AISC Specification with the understand-
ing that the use of the AASHTO Specification (with K = 1.0 
and Cb = 1.0) will lead to still more conservative estimates 
of the beam capacity.

These plots further show that using a Cb factor as per 
the AISC Specification equation with an effective length 
factor of 1.0 results in a smaller plateau length and conser-
vative estimates of design strengths when compared with 
the beam strengths estimated using the Cb factors derived 
from the energy method. It is important to note that the 
results presented in the paper are not specific to the two 

with the largest Mcr/Mcr,FEA ratio being 1.35 (in Cases 
15 and 16), using K  = 0.5. On the other hand, using  
K = 1.0 in Wong and Driver’s equation for warping-fixed 
conditions will result in 50–70% conservative estimates 
of the true capacities. The excessively unconservative 
or conservative estimates of Cb shows the limitation 
of Wong and Driver’s equation in warping-fixed end 
conditions.

4. The Nethercot and Rockey solutions estimate values 
of Cb greater than 3 for beams with warping fixity 
at their ends. Using K  = 0.5 will make the equations 
unconservative, with the maximum value of the  
Mcr/Mcr,FEA ratio equaling 3.19. Hence, these Cb factors 
are used along with an Mcr for an effective length factor 
of 1.0 rather than 0.5 to make the comparisons presented 
here more realistic. Figures  4(a) and (b) show that the 
solutions by Nethercot and Rockey (1972), derived for 
beams subjected to concentrated loads at their mid-spans 
and uniformly distributed loads, provide a reasonable 
estimate of Mcr for Cases 10 and 11 and Cases 13 and 
14. All four of these cases are simply supported in-plane. 
Cases 10 and 11 are torsionally simply supported, while 
Cases 13 and 14 are torsionally fixed.

 The elastic critical LTB capacities for warping-fixed 
beams subjected to concentrated loads at their mid-spans 
are the same despite the difference in their in-plane 
flexural boundary conditions (i.e., in Cases 13 and 15). 
Consequently, ascribing the same LTB modification 
factor to Case 15 as Case 13 appears acceptable. However, 
the moment capacity of a flexurally and torsionally 
fixed beam subjected to a uniformly distributed load 
(Case 16) significantly differs from that of a flexurally 
simply supported and warping-fixed beam with the same 
loading scenario (Case 14). Therefore, using the same Cb 
for Cases 14 and 16 results in significantly conservative 
estimates of flexural strengths, with a ratio of Mcr/Mcr,FEA 
of 0.55, suggesting that Nethercot and Rockey’s equations 
for LTB modification factors for warping-fixed cases are 
better suited for in-plane simply supported boundary 
conditions, and are significantly conservative for Case 16, 
where the I-beam is flexurally fixed in-plane (resulting in 
reverse curvature, and torsional bracing at the location of 
the maximum moment within the unbraced span).

5. The equations by Serna et al. (2006) predict strengths 
that are typically smaller than the FEA results (up to 
0.93 times Mcr,FEA for simply supported beams with 
reverse curvature bending with β  = −1, Case  9) and 
are unconservative (by approximately 10% of the FE 
solution) for a fully fixed beam subjected to a uniformly 
distributed load (Case  16). These equations, however, 
appear to provide the best estimates of Cb for the wide 
range of ideal loading and boundary conditions, even 
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Nethercot and Trahair (1976) were the first to suggest a 
method to estimate the effective length factor for beams, 
analogous to the buckling of braced columns, by account-
ing for the restraints from the adjacent spans. John and 
Subramanian found that the Nethercot and Trahair (N&T) 
method sometimes predicts significantly conservative or 
unconservative effective length factors. John and Subrama-
nian contended that (1) the critical lateral span may receive 
restraint from segments further away from the immediate 
adjoining segments (the extended restraint effect); (2) the 
restraint received from the adjoining segment also depends 
on whether the brace is at the location of the maximum or 
the minimum moment within the critical span [resolved by 
the load and boundary condition effect (LBC)]; and (3) there 
are situations where the N&T method may incorrectly iden-
tify the critical lateral span and, thereby, the critical buck-
ling load (resolved by an iteration of the N&T method). 
Three practical cases with laterally continuous spans are 
shown in Figure 6, for which the use of the appropriate Cb 
is discussed in this paper. The LBC interaction method pro-
posed by John and Subramanian (2019) (referred to as J&S 
in this paper) is used in Cases I and II, while their iteration 
method is used in Case III.

In calculating Mcr, the different Cb formulations are 
combined with different K estimates. The Cb values from 
the proposed solutions and Serna et al. (2006) (previously 
shown to be the best estimates of Cb for a wide range of 
ideal boundary conditions) are used along with the elas-
tic effective length factors derived using the classical N&T 
method and the modified method from J&S.

Figure  6 shows the loading and bending moment dia-
grams for the three cases discussed here. The beam is sim-
ply supported in-plane, and the lateral spans are marked 
as I, II, and III. The example discussed here considers a 
W30×90 beam section with a critical span length, L, of 6 m 

cross-sections shown, and any doubly symmetric hot-rolled 
section will produce similar results.

Using an inaccurate Cb along with K = 0.5 modifies the 
design strength curves such that the plateau lengths are 3.0 
and 1.25 times those of the design curves obtained using the 
energy-based Cb factors for Cases 15 and 16, respectively. 
Furthermore, using an elastic K also inappropriately ampli-
fies the inelastic LTB capacity.

Although the current AISC Specification equations 
sometimes lead to excessively conservative estimates of 
the flexural strengths when K is taken as 1.0 for warp-
ing fixed conditions, the degree of conservatism is such 
that such a simplification may not be suitable for design 
purposes. Conversely, using an effective length factor of  
K = 0.5 and the Cb factor from the current AISC Specifica-
tion will result in highly unconservative estimates of flex-
ural strengths. Therefore, any recommendation to use an 
effective length factor with the current Cb equations must 
be treated with caution.

APPLICABILITY OF THE LTB MODIFICATION 
FACTORS TO CONTINUOUS BEAMS

LTB modification factors are hitherto derived for ideal 
boundary conditions, which are simply supported and fixed 
flexurally and torsionally. However, even a single-span 
simply supported girder may have multiple lateral braces. 
The critical lateral span in such conditions receives partial 
restraint from its adjacent segments, and hence, the bound-
ary conditions for the critical lateral span lie between the 
ideal simply supported and fixed conditions. In investigat-
ing the appropriate Cb, one must also use an appropriate 
effective lateral length factor, K. The K calculations in lat-
erally continuous beams are more complex than those dis-
cussed with ideal boundary conditions.

0 10 20 30 40
Lb /Lp

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40

M
n
/M

p

Lb /Lp

Cb AISC, K = 0.5

Cb Energy, K = 0.5

Cb AISC, K = 1.0

 (a) Concentrated load at midspan (Case 15) (b) Uniformly distributed load (Case 16)

Fig. 5. Comparison of the design flexural strengths predicted using the Cb factors in AISC Specification  
Equation F1-1 and the energy method for warping-fixed conditions for W16×40 section.
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1. The flexural strengths calculated using Cb from the 
energy method and Serna et al., are conservative by 
17–32% if K is taken as 1.0. The more conservative 
predictions are for Cases II and III, where the critical 
spans are braced by their adjoining segments at the 
locations of their maximum bending moments.

2. In Case I, where the adjacent span braces the smaller end 
moment location of the critical span, the N&T method, 
when used with the Cb from the energy method and 
Serna et al., estimates the elastic critical LTB capacities 
reasonably well. However, in Case II, with the larger 
end moment at the brace location, the estimated Mcr 
using the N&T method is conservative, with a ratio of  
Mcr/Mcr,FEA equal to 0.87 for Cb from the energy method 
and 0.90 for Cb from Serna et al. In Case III, the estimated 
strengths exceed the FE solutions by 17% and 26% due to 
the incorrect identification of the critical span, as noted 
by John and Subramanian (2019).

3. The modified effective lengths proposed by John and 
Subramanian, along with the Cb from the energy method, 
predict the elastic critical LTB capacities with an error of 
less than 6% of the FE solutions across all cases.

(19 ft 8 in). The critical lateral span for this beam geometry 
in Case I is span I, and in Case II is span II. The critical 
lateral spans are marked by the hatched bending moment 
diagrams. The N&T method suggests that span II is critical 
in Case III, while span III is identified as the critical span 
using the iteration method (J&S) and FE test simulations. 
The difference in the critical spans identified by the two 
methods in Case III may be attributed to the restraint span 
II would receive at one end from span I, thereby enhanc-
ing its buckling strength. The increased elastic critical LTB 
capacity of span II will also result in greater restraint to the 
critical segment, span III.

Figure  7 shows the design flexural capacities for the 
example case by combining each of the two Cb formula-
tions (from Serna et al., 2006, and the Cb evaluated using 
the energy method) with three different elastic effective 
length factors (K = 1, K from the N&T method, and K from 
the J&S method). The strengths are normalized by the true 
strengths from the FE test simulations. These calculations 
use the appropriate K in the Cb equations by Serna et al. 
instead of the binary values of 0.5 and 1.0 provided by the 
authors.

The following conclusions are drawn from Figure 7:

K= 1  K (N&T)  K(J&S)1K= 1  K (N&T)  K(J&S)
0.0
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K= 1  K (N&T)  K(J&S)

M
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Case I Case II Case III

Cb (Energy method) Cb (Serna et al.)

Fig. 7. Comparison of flexural strengths of the laterally continuous beams  
in Figure 6 using various Cb factors for W30×90, with L = 6 m (19 ft 8 in.)
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Fig. 6. Laterally continuous beams, where the critical lateral spans are indicated with a hatched bending moment diagram.
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1. The current equations in the AISC Specification (2022) 
and the British standard for Cb work well for flexurally 
and torsionally simply supported beams bending in single 
curvature, and are mildly conservative for such beams 
bending in reverse curvature. They are conservative by 
less than 10% when the beams are subjected to single 
curvature, and by less than 20% when they are subjected 
to reverse curvature bending.

2. AISC Specification Equation F1-1 is conservative by up to 
268% for beams that are torsionally fixed and flexurally 
either simply supported or fixed, and loaded by a mid-span 
concentrated load and a uniformly distributed load (i.e., 
Cases 13–16). The equation is conservative for a beam 
with warping fixed at its ends and subjected to uniform 
moment at the ends (Case 12) by up to 72%. This is true 
if the full unbraced length (K = 1.0) is used. Further, the 
equations are excessively unconservative by up to 84% if 
an effective length factor of 0.5 is used as suggested in 
AISC Specification Section F1 Commentary. This would 
not be an ideal design solution for beams with laterally 
unbraced beams with moment connections at their ends, 
such as in rigid beam-column joints.

3. An inaccurate Cb results in falsely exaggerated plateau 
lengths and inelastic LTB capacities, especially 
when used together with an effective length factor, as 
discussed in the commentary of the AISC and AASHTO 
specifications.

4. The efficiency of the Cb factor is further examined using 
different K factors for laterally continuous beams. The 
energy method best predicts the moment modification 
factor, Cb, for ideal boundary conditions, although the Cb 
formulation from Serna et al. (2006) produces compar-
able results. However, when used in laterally continuous 
beams, one also must rely on empirical formulations to 
calculate the elastic effective length factor, K. For such 
beams, where the calculations combine an empirical K 
with a Cb, the authors find that the Cb from the energy 
method and Serna et al. when used along with the K 
from John and Subramanian (2019) produce similar 
results. The comparable predictions may be attributed 
to the approximate nature of the calculation methods 
for K. Recognizing the impracticality of the rigorous 
calculations involved in using the Rayleigh-Ritz approach 
for design, the authors recommend using the equations 
by Serna et al. for Cb along with effective length factors 
calculated using the methods by John and Subramanian.

Although the paper only presents the energy-based solu-
tions for a few select cases, similar displacement shape 
functions may be used for other loading conditions to obtain 
the corresponding expressions for the LTB capacities. This 
offers a more rigorous approach to formulating the LTB 

4. In lieu of a rigorous formulation from the Rayleigh-Ritz 
method, the authors suggest using the Cb from Serna et al. 
(2006) in conjunction with the K from the J&S method, 
which best predicts the strengths of laterally continuous 
beams, with an error of less than 2%.

DISCUSSIONS ON PRACTICAL LOADING  
AND BOUNDARY CONDITIONS

The paper presents the behavior of I-shaped members sub-
jected to transverse loads through the shear center. Many 
practical loading scenarios on I-section members in steel 
construction involve top flange loading, whereas gan-
try girders are typically loaded at their bottom flanges. A 
transverse load on an unbraced top flange reduces the elas-
tic critical moment, while the load on an unbraced bottom 
flange increases the buckling moment. In such cases where 
the top flange is not braced, the load height effect must be 
considered in addition to the LTB modification factor, as 
also discussed in the AISC Specification Commentary. 
However, the presence of a concrete slab or deck precludes 
the tipping effect due to top flange loading. Members with 
ideal boundary conditions, such as simply supported and 
fixed flexurally and torsionally, are studied in this paper. 
The detailing of the beam-to-beam or beam-to-column 
connections dictates the warping fixity at the beam ends. 
For example, a simple shear connection is often torsionally 
simply supported at its ends. However, when a steel beam is 
encased into a concrete column, the column offers complete 
fixity against twisting and warping. Similarly, a moment 
connection offers significant restraint to warping and par-
tially restrains in-plane and out-of-plane bending. Likewise, 
the secondary beams in a building often provide full or par-
tial restraints to the primary beams at discrete locations, 
leading to the conditions of laterally continuous spans dis-
cussed in this paper. It is clearly important to be cognizant 
of the various in-plane and out-of-plane restraints that steel 
detailing provides and apply design equations accordingly.

CONCLUSIONS

This paper reviews the expressions for the LTB modifica-
tion factor Cb for elastic lateral torsional buckling (LTB) 
of doubly symmetric I-shaped members in design codes 
and literature for different loading conditions, and differ-
ent flexural and torsional boundary conditions. The paper 
includes combinations of ideal simply supported and fixed 
boundary conditions for flexure and torsion, as well as 
intermediate restraint conditions modeled using laterally 
continuous beams. The empirical equations for Cb are com-
pared with analytical solutions derived by the authors using 
the Rayleigh-Ritz approach and finite element (FE) solu-
tions. The key findings are summarized here:
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Mocr Elastic critical lateral torsional moment of beam 
subjected to uniform moment, kip-in.

Mp Plastic moment, kip-in.

P Magnitude of the transverse concentrated load, 
kips

Pcr Elastic critical buckling load, kips

U Elastic strain energy of the system

V Potential of the external forces

u Lateral/out-of-plane deflection, in.

w Magnitude of the uniformly distributed load, kip/
in.

wcr Elastic critical buckling load, kip/in.

Π Total potential of the system

ϕ Twist of the cross section

β Ratio of end moments, negative for reverse 
curvature bending 
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APPENDIX: DERIVATION OF THE Cb FACTOR 
USING THE RAYLEIGH-RITZ METHOD

Loading type 6: simply supported beam with fork 
boundary conditions subjected to a concentrated load at 
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The boundary conditions for a simply supported beam are 
given by

 u = u″ = = = 0 at z = 0 and z = Lϕ ϕ″  (13)

The assumed displacement functions satisfying the above 
boundary conditions are
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The bending moment at any section along the length of the 
beam for a concentrated load P,
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The total potential energy calculated using Equation  6 is 
given by
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Differentiating the total energy with respect to the 
unknowns A, B, and C, the following equations are obtained.
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The total potential energy calculated using Equation  6 is 
given by
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Differentiating the total energy with respect to the 
unknowns A, B and C, the following equations are obtained.
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The total potential being constant, Equations 26–28 are 
equated to zero.

8 4EIy
L3 0

7Lw

8

0
128 4EIy

L3
11Lw

9

7Lw

8

11Lw

9

8 4EIw + 2 2GJL2

L3

A

B

C

0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥⎢ ⎥

−

− π

π

π

=
⎪
⎨
⎪

⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪
⎧ ⎫

⎬
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

The solution for the elastic critical buckling load, wcr, 
can be obtained by evaluating the determinant of the above 
matrix.
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Now, the elastic critical lateral torsional buckling capac-

ity can be estimated using the expression Mcr = wcrL
2
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The LTB modification factor, Cb, is estimated by tak-
ing the ratio of Mcr given in Equation  28 and Mocr for 
warping-fixed condition (Equation  1) with effective 
un braced length 0.5L, resulting in a value of 1.77.
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The total potential being constant, Equations 17–19 are 
equated to zero.
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The solution for the elastic critical buckling load, Pcr, 
can be obtained by evaluating the determinant of the above 
matrix.
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Now from the elastic critical lateral torsional buckling 

moment can be estimated using the expression Mcr = LPcr
4
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The LTB modification factor, Cb, is estimated as the ratio 
of Mcr given in Equation 21 and Mocr (Equation 1) resulting 
in a value of 1.42.

Loading type 9: flexurally and torsionally fixed beam 
subjected to uniformly distributed load along the 
centroidal axis

The boundary conditions for a flexurally and torsionally 
fixed beam are given by

 u = u = = = 0 at z = 0 and z = L′′ ϕ ϕ  (22)

The assumed displacement functions satisfying the above 
boundary conditions are
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The bending moment at any section along the length of the 
beam for a uniformly distributed load w per unit length,
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