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ABSTRACT

A method was recently proposed, by Wei and Packer (2021), for application of the 2016 AISC Specification (AISC, 2016) to rectangular HSS 
sidewall instability. The proposal was based on evidence from prior research and collated data from international experiments. Herein, this 
topic is further updated with very recent research, and suggested improvements by others. An expanded database containing both experi-
mental and numerical (finite element) tests of rectangular HSS-to-HSS cross connections with chord sidewall failure is hence amassed, 
totaling 227 tests. An analysis of this data reinforces the recent recommendations.

A review is given of methods in use for determining the structural reliability of steel members and connections. Based on this, a reliability 
study is performed on the recent recommendations, using various closed-form reliability methods as well as Monte Carlo simulation, to 
determine appropriate resistance factors for use with nominal-strength design equations for HSS sidewall instability. The influence of many 
variables, in particular chord sidewall slenderness, live-to-dead load ratio, as well as material and geometric properties, on the structural 
reliability of full-width rectangular HSS-to-HSS cross-connections under branch axial compression is studied.

KEYWORDS: hollow structural sections, cross connections, sidewall instability, reliability, resistance factors, Monte Carlo simulation.

INTRODUCTION

The 2016 AISC Specification for Structural Steel Buildings 
(AISC, 2016), hereafter referred to as the AISC Specifi-
cation, provisions for web stability under local compres-
sion loading were applied to HSS connections by Wei and 
Packer (2021) through a limited experimental study and an 
analysis of a database of full-width rectangular HSS cross-
connection experimental tests. This study showed that 
the web local crippling limit state never governs for HSS 
grades up to 50 ksi yield and sidewall slenderness values up 
to 57. Connections meeting the requirements do not need 
to be checked for web local crippling as a limit state. The 
web local yielding limit state in the AISC Specification was 

found to be very applicable to the full-width rectangular 
HSS cross (or X-) connection, illustrated in Figure 1.

Wei and Packer (2021) proposed to use the findings of 
Kuhn et al. (2019) to specify a limit for when the AISC 
Specification Chapter E can be used to determine the HSS 
chord sidewall (or web) compression buckling resistance. 
Instead of requiring the bearing length to be greater than 
the chord depth, as mentioned in the AISC Specification 
Commentary for I-shaped sections, a bearing length of 
greater than 0.25 of the chord depth was a more appropriate 
demarcation point for HSS connections (Kuhn et al., 2019). 
The effective length factor in the column buckling model 
is not stipulated by the Specification but was taken as 0.65 
because rectangular HSS sidewalls resemble more of a 
fixed-fixed end restraint than a pin-pin end restraint. It was 
also determined that the branch angle of inclination, θ, does 
not have a definite impact on the cross-connection capacity; 
thus, the predicted cross-connection capacity (expressed as 
a force in an inclined branch) was conservatively limited 
to only the vertical force component of the branch member 
force (Wei and Packer, 2021). These proposals for applying 
the 2016 AISC Specification web compression limit states 
to rectangular HSS cross-connections are shown in Table 1. 
As with this current study, the connections were not suscep-
tible to out-of-plane instability. With regard to Table 1 and 
thereafter, a list of symbol definitions is given at the end of 
the paper, but the symbols used herein are also in accord 
with the AISC Specification.
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Fig. 1. Example of a full-width rectangular  
HSS cross connection, in vertical bracing.

Table 1. Proposed Application of the 2016 AISC Specification Web Compression  
Limit States to Rectangular HSS Cross Connections, per Wei and Packer (2021)

Limit State
HSS-to-HSS Connection Nominal Strength, Pn  

(kips)
ϕϕ  

(ΩΩ)

Web local yielding, interior

For lend > H

2Fyt 7.5t+ Hb

sin
⎛
⎝

⎞
⎠θ  

(1)
1.00  
(1.50)

Web local crippling, interior

For lend  ≥ H/2

1.6t2 1+

3Hb

sin
H

EFyQf

⎛

⎝
⎜

⎞

⎠
⎟

⎜ ⎟
⎜ ⎟θ

 

(2)
0.75  
(2.00)

Web compression buckling, 
interior, and lb ≤ 0.25H

For lend  ≥ H/2 and Hb/Hsinθ ≤ 0.25

48t3

H 3t
EFyQf−

⎛
⎝⎜

⎞
⎠⎟  

(3)
0.90  
(1.67)

Web compression buckling, 
interior, and lb > 0.25H

For lend  ≥ H/2 and Hb/Hsinθ > 0.25  
Use AISC Specification Equations E3-1, E3-2, and E3-3, with  
K = 0.65, Lc/r from Equation 4, and Ag (for each sidewall) from 
Equation 6

0.90  
(1.67)
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For the web compression buckling limit state with lb > 
0.25H, the slenderness, λ or Lc/r, is calculated according to 
Equation 4 (Wei and Packer, 2021):

 
= KL

r
= Lc
r

= 3.46
H

t
3

1

sinθ
λ −⎛

⎝
⎞
⎠  

(4)

If the branch member is inclined, there is an allowance 
(indicated in Equation  4) resulting in a longer buckling 
length (Packer et al., 2009; IIW, 2012; ISO, 2013). A nondi-
mensional slenderness, λC, can also be described by:

 
C =

Fy
E

λ λ
π  

(5)

Using Equation  4, the critical stress, Fcr, can be deter-
mined for each chord sidewall or “column” from AISC 
Specification Section E3 and, using the cross-sectional 
area for each sidewall “column” (a load dispersion length 
multiplied by the wall thickness) given by Equation 6, the 
buckling strength of each sidewall can then be calculated.

 
Ag = 7.5t + Hb

sin
t

θ
⎛
⎝

⎞
⎠  

(6)

Herein, the topic of chord sidewall buckling in full-
width rectangular HSS-to-HSS cross connections is further 
updated with recent research and suggested improvements 
by others. An evaluation of various failure models is con-
ducted using data reflective of North American rectangular 
HSS strengths; a reliability study is then performed using 
various closed-form reliability methods, as well as Monte 
Carlo simulation (MCS), to determine appropriate resis-
tance factors for use with the nominal-strength design equa-
tions recommended.

RECENT DEVELOPMENTS

Lan et al. (2021)

Recently, a review of competing proposals was performed 
by Wardenier et al. (2020) against a collated experimen-
tal and numerical database of full-width rectangular HSS-
to-HSS cross connections in branch compression, which 
resulted in the following chord sidewall buckling equation, 
NL (Lan et al., 2021):

 
NL =CfFk 2Hb +10t( ) 1

sin θ
Qf

 
(7)

where

 
F χk =

H

Hb

0.15

Fy Fy≤
⎛
⎝⎜

⎞
⎠⎟  

(8)

and

 
Cf = 1.1 0.1

Fy
355

1.0≤−
 

(9)

The material factor (Cf in Equation 9, with Fy in MPa) 
was added to the proposed connection capacity by Lan et al. 
(2021) to cater for the influence of high-strength steels with 
a yield strength up to 139 ksi (960 Mpa). High-strength steel 
rectangular HSS connections have a larger elastic range, 
have material softening in the heat-affected zone, and are 
more prone than regular-strength steel rectangular HSS 
connections to production and fabrication imperfections 
(Lan et al., 2021). The branch angle effect of the proposed 
Equation 7 is in accordance with Davies and Roodbaraky 
(1987). Two possible methods were advocated for deter-
mining the buckling reduction factor χ: (1) using buckling 
curve c in EN 1993-1-1 (CEN, 2021), with a chord sidewall 
slenderness with an effective length factor of 0.5, and (2) a 
linear alternative given by:

 
=χ 1.12 0.012

H

t

Fy
355

1.0≤−
 

(10)

Despite the effort expended on achieving accurate 
nominal-strength models for the chord sidewall bucking 
limit state, in the format of Eurocode 3 (CEN, 2021), only 
a perfunctory reliability analysis was performed to obtain 
resistance expressions. Inclusion of the (H/Hb)0.15 term in 
Equation 8 complicates the direct use of the AISC Specifi-
cation Chapter E column buckling approach, so the method 
of Lan et al. (2021) is not considered further.

Kim and Lee (2021)

Kim and Lee (2021) performed a numerical and experimen-
tal study on rectangular HSS cross connections in which 
they proposed that, for full-width rectangular HSS cross 
connections, sidewall failure be idealized by a column 
model with a column width of Hb. Their proposed sidewall 
effective length factor, K, was variable, based on the branch 
and chord heights, as a value of 0.5 was found to be uncon-
servative for high Hb/H. This variable K, with the corre-
sponding width of the sidewall “column” based solely on 
Hb without any load dispersion, as shown in Equation 11, 
achieved better correlation with their database. The effect 
of branch angle was negligible; thus, it was neglected. The 
AISC-format connection strength equation for rectangu-
lar HSS cross-connection chord sidewall buckling under 
branch axial compression, with the Kim and Lee (2021) 
recommendations, NKL, can be expressed by:

 NKL = 2FcrtHbQf  (11)

where Fcr is determined by AISC Specification Section E3, 
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(2020) because data was available and high-yield HSS 
were not being considered. All tests with a bearing length 
less than 0.25 of the chord depth were also screened out 
to exclude tests failing by web (or sidewall) local yielding 
rather than sidewall buckling. (The limit state of sidewall 
local yielding is dealt with later in this paper.) Full data 
for the remaining 44 experimental and 183 numerical full-
width rectangular HSS-to-HSS cross connections under 
branch axial compression from the extended database(s), 
which failed by chord sidewall buckling, are tabulated by 
Rudman (2021).

The parameter ranges for the experimental database are 
β = 1.0, 12.6 ≤ 2γ ≤ 42.2, 12.6 ≤ 2γ∗ ≤ 50.5, 0.50 ≤ η ≤ 2.47, 
0.60 ≤ η∗ ≤ 1.00, −0.87 ≤ n0 ≤ 0, 44° ≤ θ ≤ 90°, and 33 ksi 
(228 Mpa) ≤ Fy ≤ 70 ksi (483 Mpa). The 44 experimental 
rectangular HSS sections were either cold formed or hot 
finished; 14 have a non-90° angle, while the other 30 tests 
have a 90° angle. The parameter ranges for the numerical 
database are β = 1.0, 10 ≤ 2γ ≤ 35, 10 ≤ 2γ∗ ≤ 35, 0.25 ≤ 
η ≤ 2.00, 0.21 ≤ η∗ ≤ 2.50, −0.80 ≤ n0 ≤ 0.75, θ = 90°, and 
49 ksi (338 Mpa) ≤ Fy ≤ 70 ksi (483 Mpa). The 183 numeri-
cal rectangular HSS sections were either cold formed or 
hot finished. The prime limits of the screened database are 
shown in Table 2.

EVALUATION OF DESIGN PROPOSALS

The compiled and screened database was evaluated against 
the following design methods for sidewall buckling failure 
in rectangular HSS-to-HSS cross connections under branch 
axial compression:

1. AISC Specification Chapter J, assuming Chapter E is 
applied for lb > H, and (a) K = 1.0; (b) K = 0.65.

2. Wei and Packer (2021) proposal, assuming Chapter E is 
applied for lb > 0.25H, and K = 0.65.

3. Kim and Lee (2021) recommendations.

For the combined database of 227 tests on full-width rect-
angular HSS-to-HSS cross-connection tests under branch 
axial compression, the resulting statistical evaluation of vari-
ous design methods for chord sidewall buckling is shown 
in Figure  2. The mean and coefficient of variation (COV) 
of the ratios N1u/NAISC, N1u/NWP, and N1u/NKL are indicated 
on the plots, where N1u represents the connection ultimate 
strength and NAISC, NWP, and NKL represent nominal strength 
prediction models. It can be seen that all methods feature 

with:

 
K = 0.5

Hb

H  
(12)

DATABASE FOR FULL-WIDTH RECTANGULAR 
HSS CROSS-CONNECTION TESTS UNDER 

BRANCH COMPRESSION

As discussed previously, Wardenier et al. (2020) compiled 
an up-to-date database of recent tests, at the time, on rect-
angular HSS-to-HSS full-width cross connections with 
chord sidewall failure when subjected to branch compres-
sion [i.e., the database used by Lan et al. (2021)]. For the 51 
experimental tests in that database, the source references of 
Fan (2017), Kuhn et al. (2019), Feldmann et al. (2016), and 
Pandey and Young (2020) were used. The latter two sources 
cover high-strength steel rectangular HSS connections 
with nominal yield strengths up to 139  ksi (960  Mpa)—
far in excess of typical North American rectangular HSS 
strengths. The “numerical tests” (finite element models) 
included in the database were 21 by Yu (1997) and 152 by 
Kuhn (2018). In addition to other limits, Wardenier et al. 
(2020) screened their database to 2γ∗ = H/t ≤ 40 because no 
data was included for high-strength steel rectangular HSS 
connections with larger H/t. (Also, in general, rectangu-
lar HSS sections with large 2γ∗ are sensitive to geometric 
imperfections.)

Recently, Wei and Packer (2021) and Kim et al. (2019) 
each completed two further tests on rectangular HSS full-
width cross connections under axial compression, beyond 
the Wardenier et al. (2020) database. These four tests have 
been added, herein, to the experimental tests in the Warde-
nier et al. database to produce a new, extended experimental 
database (of 55 tests in total). Very recently, a further 48 
numerical tests were generated by Kim and Lee (2021) to 
investigate chord sidewall failure of rectangular HSS cross-
connections in compression. These numerical tests, in addi-
tion to those of Yu (1997) and Kuhn (2018), were compiled 
to produce a new, extended numerical database (of 221 tests 
in total).

To both the extended experimental and numerical data-
bases, screening was applied by the authors. First, all 
tests with a yield strength greater than 70  ksi (483  Mpa) 
were removed because North American rectangular HSS 
strengths rarely exceed this. The 2γ∗ and 2γ limit was 
increased from the value of 40 used by Wardenier et al. 

Table 2. Database Limits Used in the Current Study

Steel Nominal Yield Stress 2γγ∗∗ and 2γγ Limit lb Limit

≤70 ksi (483 MPa) 50.5 Hb/Hsinθ > 0.25
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sidewall slenderness and produces the largest mean ratio. 
This can be attributed to their proposed change to the width 
of the sidewall “column.” In low-slenderness HSS, the side-
wall thickness adds a significant amount of width to the 
bearing length (due to load dispersion). Eliminating this 
width from the nominal-strength equation results in under-
predicting connection strength. As the sidewall slenderness 
increases, the wall thickness contributes less to the width 
of the failure area, and the connection strength predictions 

over- and underestimations of the ultimate strength. Fig-
ures  2(a) and 2(b) show correlations by applying the pro-
visions of AISC Specification Chapter J to HSS and using 
the Chapter E column buckling approach for bearing lengths 
lb > H. Regardless of the effective length factor used [K = 
1.0 in Figure 2(a); K = 0.65 in Figure 2(b)], the COV is high, 
reflecting an imprecise model.

The Kim and Lee (2021) equation, Figure 2(d), consis-
tently underpredicts the strength of connections with a low 

(a) 2016 AISC Specification Chapter J, Chapter E is applied for lb > H, and using K = 1.0

(b) 2016 AISC Specification Chapter J, Chapter E is applied for lb > H, and using K = 0.65

Fig. 2(a-b). Comparison of 227 rectangular HSS-to-HSS cross-connection test results against prediction methods.
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using the Kim and Lee (2021) equation become more accu-
rate. This results in their proposed design equation produc-
ing a large COV and thus being an imprecise predictor of 
the connection strength.

The Wei and Packer (2021) proposed design method, 
Figure 2(c), produces the lowest actual-to-predicted mean 
ratio; however, it is still greater than 1.0. Significantly, it 
has a much lower COV than the other design models con-
sidered. Thus, the Wei and Packer (2021) proposal for HSS 
chord sidewall buckling (Table 1) is still recommended for 

adoption. The following sections of this paper deal with 
determining the appropriate resistance factor, ϕ, for use 
with this design approach.

STRUCTURAL RELIABILITY,  
TARGET RELIABILITY INDEX,  

AND RESISTANCE FACTORS

It is well-known that engineering decisions must be made 
in the presence of uncertainties arising from inherent 

(c) Wei and Packer (2021) proposal, Chapter E is applied for lb > 0.25H, and using K = 0.65

(d) Kim and Lee (2021) proposal with variable K

Fig. 2(c-d). Comparison of 227 rectangular HSS-to-HSS cross-connection test results against prediction methods.
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randomness in design parameters and imperfect modeling. 
Due to these uncertainties, potential risk arises in engineer-
ing design; therefore, safety factors are required to ensure 
an acceptable level of risk, and absolute reliability is an 
unattainable goal because of uncertainties (Ellingwood et 
al., 1980).

The structural reliability of a member or element is 
based on the limit state where the member’s resistance, R, 
and the load effect, S, acting on the member are compared 
(Melchers and Beck, 2018). A failure event occurs under the 
following conditions, or any other equivalent criteria:

 
R S < 0

R

S
<1 ln R( ) ln S( ) < 0−−

 
(13)

The randomness in the resistance of an element, R, and 
the load effect, S, can be accounted for by introducing 
dimensionless random variables. For the resistance, these 
random variables help account for variations in the proper-
ties of the element and the assumptions used in determin-
ing the resistance (Ravindra and Galambos, 1978). For the 
load effect, the random variables account for uncertainties 
in load intensities and structural analysis (Ravindra and 
Galambos, 1978). The random variable obtained by sub-
tracting ln(S) from ln(R), is called the safety margin, g:

 g = ln R( () )ln S( ) = ln R S−  (14)

and the probability of failure, pF, of a structural element can 
thus be represented by:

 pF = P g < 0⎡⎣ ⎤⎦ (15)

The probability distribution of g is unknown in prac-
tice. However, if the assumption is made that R and S are 
independently log-normally distributed, then g is normally 
distributed, and a first-order probabilistic method requir-
ing only the mean and standard deviation may be used 
(Ravindra and Galambos, 1978). These parameters may 
be summarized into a relative measure of safety, known as 
the safety index, β+, defined as follows (Ellingwood et al., 
1980):

 
+ = gm

gσ
β

 
(16)

where gm is the mean value of g and σg is the standard 
deviation of g. The reliability index can be conveniently 
interpreted as the distance from the mean to the origin, rep-
resenting failure, in units of standard deviations. Substitut-
ing the expression in Equation 14 results in:

 

+ =
ln

R
S m

ln R
S( )σ

β

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

 

(17)

and Equation 17 may be approximated using first-order sta-
tistics of R and S:

 

+
ln

Rm
Sm

VR
2 +VS2

⎛
⎝

⎞
⎠

β
 

(18)

where Rm and Sm are the means of the resistance and load 
effect and VR and VS are the corresponding COVs. Equa-
tion 18 includes a small-variance approximation [i.e., substi-
tutions for ln(R/S)m and σln(R/S)] that are valid when VR and 
VS are both less than about 0.30 (Ellingwood et al. 1980). If 
this condition is violated, β+ can instead be determined by 
using Equation 19, which is exact if R and S are assumed 
to be independent log-normal random variables (Benjamin 
and Cornell (1970),

 

+ =

ln
Rm
Sm

1+VS2

1+VR2

ln 1+VS2( ) 1+VR2( )
β

⎛

⎝
⎜

⎞

⎠
⎟

⎡⎣ ⎤⎦  

(19)

In either case, the probability of failure, pF, may be com-
puted as:

 
pF = +− βΦ⎡⎣ ⎤⎦ (20)

If R and S are instead described by independent normal 
distributions, a more appropriate formulation for the safety 
margin is:

 g = R − S (21)

In addition,

 

+ = Rm Sm

R
2 +σσ S

2

−
β

 
(22)

and substitution of Equation  22  into Equation  20 for pF 
yields an exact probability of failure.

The resistance of a structural steel member or connec-
tion, R, is often assumed to be a function of the material 
strength, the geometric properties, and a professional factor. 
The professional factor accounts for the imperfect nominal 
resistance design equation. Typically, these relationships 
are further assumed to be represented by actual-to-nominal 
ratios in the form:

 R =MGPRn (23)

The material ratio, M, is the ratio of the actual-to-nomi-
nal relevant material property of the structural steel. The 
geometric ratio, G, is the ratio of the actual-to-nominal rel-
evant geometric properties of the structural steel. The pro-
fessional ratio, P, represents the ratio of observed capacity 
in tests (experimental or numerical) to predicted capacity, 
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with the latter based on measured material and geometric 
properties and a nominal strength model, Rn.

Similarly, the load effects on a steel member or connec-
tion can be assumed to be represented by the sum of the 
actual-to-nominal ratios for the applied loads and their 
nominal value. The load effect, S, can hence be written as:

 S = δS,i Sn,i∑  (24)

where δS is the actual-to-nominal ratio for a load effect and 
Sn is the nominal load effect. The subscript i refers to the 
load effect under consideration (dead, live, etc.).

Load and resistance factor design (LRFD) and limit states 
design (LSD) criteria are based on an expression where the 
resistance of an element must be greater than the sum of the 
factored load effects acting on the element; that is,

 
Rn iSn,i

i=1

j
∑≥ αϕ

 
(25)

The resistance side of the criterion is the product of the 
nominal resistance of the element, Rn, and a dimensionless 
resistance factor, ϕ. The load effect side of the criterion is 
the sum of the products between the various nominal load 
effects, Sn, and the associated dimensionless load factor, αi.

Separation Factor Approach

Equation  18 can be rearranged and expressed as a first-
order probabilistic design criterion with a central safety fac-
tor, θC (Ravindra and Galambos, 1978), which combines the 
uncertainties of both the resistance and load effects; that is,

 Rm CSm≥ θ  (26)

 C = e
+ VR

2+VS2( )θ
β

 (27)

Lind (1971) proposed the following linear approxima-
tion, Equation 28, to the square root of the sum of squares 
terms in the exponent of Equation  27, which allows for 
the separation of the resistance and load effect terms. In 
doing so, the resistance factor can be determined without 
knowledge of the load effects (and load factors can be deter-
mined without knowledge of the resistance). For a range of 
3 ≤ VR/VS ≤ 3, with α = 0.75 (where α is the coefficient of 
separation), this approximation is within about 6%. Equa-
tion 29 is established through substitution of Equation 28 
into Equations 27 and 26.

 VR
2 +VS2 = VR +VS( )α  (28)

 e
+VR( )Rm e

+VS( )Smα αβ β≥−
 (29)

Galambos and Ravindra (1973) extended this concept 
further by introducing two different separation factors, one 
for the load effects, and one for the resistance. They went 

on to show that a value of α = 0.55 on the resistance side of 
the equation gave a near-zero error and a standard deviation 
of 3% for a limited range of key variables. This was deter-
mined through an error minimization process considering 
combinations of dead, live, and wind load (Galambos and 
Ravindra, 1977). After the addition of random variables and 
linear approximations to the LRFD criterion, the resistance 
factor can be expressed as seen in Equation 30 (Ravindra 
and Galambos, 1978).

 
= Rm
Rn

e
+VR( )ϕ αβ−

 
(30)

The value of β+ was determined by selecting a standard 
design situation with the allowable stress design method 
and requiring that the LRFD criterion generally produce 
the same element to resist the forces. For structural ele-
ments, β+ = 3.0, while for structural connectors, β+ = 4.5 
(Ravindra and Galambos, 1978).

Many past studies have taken Rm/Rn to simply be the ratio 
of observed capacity in tests (experimental or numerical) 
to predicted capacity, with the latter based on measured 
material and geometric properties and a nominal strength 
model. Therefore, VR is also simply taken as the COV of 
the observed capacity in tests (experimental or numerical) 
to predicted capacity. The “separation factor approach” 
used throughout this study adopts this methodology, with a 
separation factor of α = 0.55 in accordance with Ravindra 
and Galambos (1978). As noted earlier, a value of α = 0.75 
(Lind, 1971) has also been used, historically, with ACSE 
(2016) currently advocating for a value of α ≈ 0.70.

Expanded Separation Factor Approach

If M, G, and P are assumed to be independently log-normal, 
then the mean resistance, Rm, can be expressed using the 
ratio of mean to nominal resistance, δR:

 Rm = RRnδ  (31)

where

 R = M G Pδ δ δ δ  (32)

and δM, δG, and δP represent the mean values for M, G, and 
P, respectively. The COV of the resistance is well approxi-
mated by the square root of the sum of the squares of the 
three different COVs—VM, VG, and VP—which are associ-
ated with δM, δG, and δP. The resistance factor equation can 
be seen in Equation 34.

 VR = VM
2 +VG2 +VP2  (33)

 = Re
+VR( )δϕ −αβ

 (34)

This approach applies to members whose resistance is 
a direct product of a geometric and material property. For 
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members, whose resistance is a product of many geometric 
and material properties, the contribution from each prop-
erty must be determined over the range of the independent 
variable. The relative contribution of each of the distinct 
properties to the mean ratios and the related COVs can be 
approximated by mathematical manipulation of the resis-
tance equation, using a partial derivative approach (Ken-
nedy and Gad Aly, 1980). Depending on how the equation 
describing the property was determined, either on a solely 
mathematical basis or a semi-empirical or curve-fitting 
basis, different participation factors for the various proper-
ties will be determined (Kennedy and Gad Aly, 1980).

Effect of Material Parameters

The resistance of a structural steel column under compres-
sion loading is governed by its overall slenderness, which 
determines the critical buckling stress, which, in turn, 
depends on the radius of gyration (a geometric parameter), 
the yield stress, and the modulus of elasticity (material 
parameters). Thus, as the column slenderness varies, so 
does the dependency on the material parameters. Schmidt 
and Bartlett (2002) showed that for columns, using the over-
all flexural buckling equation in CSA S16 (CSA, 2019a), 
at low slenderness the yield strength contributes more to 
the material mean ratio and COV, while at high slenderness 
the radius of gyration and modulus of elasticity dominate. 
Because statistical parameters for materials are contingent 
on column slenderness, different resistance factors are 
therefore determined for various chord sidewall slender-
ness values. This results in a range of resistance factors (or 
alternatively safety indices) for rectangular HSS sidewalls 
under branch compression.

Lognormality of the Resistance

Equations 23 and 32 are convenient due to the log-normality 
assumption. When the material strength, geometric proper-
ties, and professional factor are independently log-normal, 
so is the resistance. A log-normal distribution can be 
described entirely through its mean and COV (second-order 
statistical parameters). If the log-normality assumption is 
true, then the probability of failure, or reliability index, 
can be determined through the mean and COVs of mate-
rial strength, geometric properties, and professional fac-
tor. Reliability analysis techniques make this assumption 
in order to predict the probability of failure, or reliability 
index, using second-order statistical parameters from sur-
vey and test data. In a recent paper by Xi and Packer (2021), 
this assumption was assessed for the resistance.

The data for actual-to-predicted nominal strength (pro-
fessional factor) that are obtained from experimental or 

numerical tests are often a poor fit to normal or log-normal 
probability distributions. The typical data for actual-to-
nominal distributions of the material and geometric proper-
ties of HSS sections are generally a reasonable fit to normal 
or log-normal probability distributions. When all the data 
is combined, the resistance distribution has a more regular 
shape (Xi and Packer, 2021). Xi and Packer used actual-to-
nominal data of the material strength from Liu (2016) and 
actual-to-nominal data of the geometric properties from 
Kennedy and Gad Aly (1980), as well as actual-to-predicted 
test data from rectangular HSS-to-HSS cross connections 
with chord sidewall failure from Wei and Packer (2021) and 
Bu et al. (2021). It was shown that the combined resistance 
obtained by a simulation procedure closely approximated a 
log-normal distribution even if some of the data was seem-
ingly incompatible (Xi and Packer, 2021). Despite having 
an irregular distribution for the professional factor, the 
expanded separation factor approach can be used for evalu-
ating the reliability of HSS connections.

As an example of this effect, Figure  3(a) shows the 
actual-to-predicted ultimate strength correlation for the 
limit state of web buckling, using the method of Wei and 
Packer (2021) and the experimental data for full-width HSS 
cross connections from that paper. After sampling from this 
professional factor histogram, plus typical distributions for 
material and geometric properties, the numerically simu-
lated resistance (using 1.9  million samples) is shown in 
Figure 3(b). The continuous curve (red line) represents the 
best-fit log-normal distribution using an iterative maximum 
likelihood estimation (MLE) technique. The statistical 
parameters given in Figure 3 pertain to the histograms.

Approximate FORM Approach

Nowak and Lind (1979) showed that the load side of the 
LRFD inequality (Equation 25) can be considered in deter-
mining the resistance factor (or, alternatively, the reliability 
index) by using the following equation:
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The most accurate results for this first-order reliability 
method (FORM) occur when both the resistance and load 
side of the LRFD reliability inequality have a log-normal 
distribution. Of late, it has become common practice to con-
sider the load side of the LRFD reliability inequality when 
determining resistance factors, and it is even stipulated by 
some standards such as CSA S408-11 (CSA, 2011). Con-
sidering only the basic combination of dead and live loads, 
Schmidt and Bartlett (2002) determined the following 
expressions for the reliability index and resistance factor:
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where δR is the mean ratio of the resistance and is com-
prised of three different mean ratios in accordance with the 
expanded separation factor approach, VR is the COV of the 
resistance per the expanded separation factor approach, VS 
is the COV of the load effects, αD and αL are the load fac-
tors for dead and live loads, δD and δL are the bias coeffi-
cients for dead and live loads, and L/D is the live-to-dead 
load ratio. Only the combination of dead and live loads is 
considered in this paper.

Schmidt and Bartlett (2002) also computed the resistance 
factor over a range of L/D ratios. This results in a range of 

reliability indices for a particular structural steel member 
(or connection). The load effect was assumed to have a log-
normal distribution because the L/D ratio for steel members 
typically exceeds 1.0, thus the log-normal live load distri-
bution component dominates the load effect (Schmidt and 
Bartlett, 2002). Galambos (2006) has also used both the 
load side of the LRFD reliability inequality and the L/D 
ratio to determine resistance factors.

Reliability Method of CSA S408-11

The Canadian Standards Association provides a standard, 
CSA S408-11 (CSA, 2011), with guidelines for the develop-
ment of limit states design standards. Annex B.2.5 of CSA 
S408-11 provides a so-called Approximate Method (an 
approximate FORM) for calculating the resistance factor 
to achieve target reliability values for arbitrary limit states. 
Annex B.2.5 cites Equation  35, which is to be used with 
load factors and load combinations specified in a loading 
standard such as NBC (2020) or ASCE (2016). Applying the 

(a) Statistical correlation for professional factor only

(b) Statistical correlation for numerically simulated resistance

Fig. 3. Resistance smoothing effect produced by sampling from multiple histograms (Xi and Packer, 2021).
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where σP is the standard deviation of the ratio of actual-to-
nominal strengths.

Monte Carlo Simulation Approach

As yet another alternative to the previous approaches, Monte 
Carlo techniques can be used to randomly sample from the 
various resistance and load effect parameter distributions 
to determine a possible resistance and load effect scenario 
for a member or connection. This process closely approxi-
mates the probabilistic behavior of the resistance and load 
effect for the desired design scenario with a large number 
of samples. This sampling technique is known as a Monte 
Carlo simulation (MCS). Kennedy and Baker (1984), Lund-
berg and Galambos (1996), Hong and Zhou (1999), and oth-
ers have undertaken such MCSs. MCS is also advocated as 
a reliability analysis method in some codes and standards 
(e.g., CSA S408-11).

RESISTANCE FACTOR EVALUATION  
FOR WEI AND PACKER (2021)

In this study, statistical parameters were taken as δD = 1.05 
and VD = 0.10 for the dead load effect and as δL = 0.78 and 
VL  = 0.32 for the live load effect (Schmidt and Bartlett, 
2002). Dead loads can be more accurately predicted than 
live loads, and for comparison, values of δD = 1.0 and VD = 
0.08 were used in a previous reliability study of tubular con-
nections in offshore structures (Packer and Kremer, 1988). 
Values of αD = 1.20 and αL = 1.60 were used, per ASCE/
SEI 7-16 (ASCE, 2016), and material statistical parameters 
of δM = 1.178 and VM = 0.086 per Xi and Packer (2021). 
These material parameters are based on a survey done by 
Liu (2016) on variations in yield stress of A500 (ASTM, 
2021) dual-certified Grade B/C rectangular HSS. The geo-
metric statistical parameters, δG = 0.975 and VG = 0.025, 
were adopted from a survey by Kennedy and Gad Aly 
(1980), but the proposed design method depends on mul-
tiple rectangular HSS geometric properties, such as chord 
thickness and height. The geometric statistical parameters 
taken in this study are the lowest mean ratio and the highest 
COV, from all the contributing properties, to be conserva-
tive. The target safety index, β+, for the ductile connections 
under consideration was assigned to be 3.0, which is in 
accord with the Commentary to 2016 AISC Specification 
Section B3.1. A target safety index of 3.0 is now a com-
monly accepted level of safety for public buildings, corre-
sponding to a notional probability of structural failure of 
1.35 × 10−3 (Packer and Kremer, 1988).

For the AISI S100-16 reliability method, the material and 
geometric statistical parameters were compared with the 
requirements in Chapter K of that specification. The only 
statistical parameter that was in accordance with the require-
ments was the geometric ratio (mean). The other statistical 

basic dead plus live load combination to the approximate 
FORM analysis, and expressing the equation as a function 
of the L/D ratio, gives the resistance factor in Equation 37. 
Annex B.2.5 of CSA S408-11 states that the COV of the 
load effects can be determined by Clause 14.15.2.3 of CSA 
S6:19 (CSA, 2019b), which is given by Equation 38 for dead 
plus live load.
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Reliability Method of AISI S100-16

Chapter K of American Iron and Steel Institute S100-16 
(AISI, 2016) provides a method to determine the resistance 
factor of a cold-formed structural steel resistance equa-
tion by direct testing. This method uses the LRFD crite-
rion to determine the resistance factor but simplifies the 
load side to a single load combination (1.2D + 1.6L) and 
L/D = 5 (Meimand and Schafer, 2014). The resistance fac-
tor given by AISI S100, Section K2.1.1 (AISI, 2016) is in an 
“expanded separation factor” form:

 =C M G P( )e
+ VM

2 +VG2+CPVP2+VS2δ δ δϕϕ −β
 (39)

where Cϕ is a calibration coefficient and CP is a correc-
tion factor for sample size. For the material factor and the 
fabrication factor, the means (δM and δG, respectively) are 
to be determined from statistical analysis but are not to be 
greater than the values given in Table K2.1.1-1, while the 
COVs (VM and VG, respectively) are not to be less than the 
values given in Table K2.1.1-1 (AISI, 2016). The calibra-
tion coefficient, target safety index, and COV for the load 
effects are predetermined factors based on LRFD criteria, 
with the mean value of the professional factor given by:
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where nt is the number of tests, Rt is the tested strength, and 
Rn is the nominal strength by a rational engineering analy-
sis. The subscript i denotes an individual test within a series 
of tests. The correction factor for sample size is given by:
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where m is the number of degrees of freedom (m = nt − 1). 
The COV for the test results is given by:
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parameters were hence taken from Table K2.1.1-1. The cali-
bration coefficient and COV for the load effect were taken 
as Cϕ = 1.52 and VS = 0.21, respectively, due to use of the 
LRFD format (AISI, 2016). The target reliability index, β+, 
was assigned to be 2.5 because the connection resistance is 
dependent on the HSS members and the use of the LRFD 
equation (AISI, 2016).

The professional factor statistical parameters used for 
the Wei and Packer (2021) proposed approach for the chord 
sidewall compression buckling limit state are taken from 
the results of the combined database: δP = 1.038 and VP = 
0.131 [see Figure 2(b)]. (The professional factors from the 
experimental and numerical databases, separately, are simi-
lar to the combined values.)

SIDEWALL COMPRESSION BUCKLING

Closed-Form Solutions

The resistance factor for chord sidewall compression buck-
ling can be determined by the various closed-form meth-
ods. Two different sets of material statistical parameters 
can be used to determine the resistance factors: (1) param-
eters based only on the yield stress and (2) parameters that 
depend on the chord sidewall slenderness.

Based on Chord Yield Stress

Using the previously noted material statistical parameters 
for yield stress, the resistance factor is 0.836 for the sepa-
ration factor approach and 0.917 for the expanded separa-
tion factor approach. The resistance factors over a range 

of L/D ratios, using the approximate FORM analysis in 
CSA S408-11, can be seen in Figure 4, wherein the dip at 
a L/D ratio of about 0.2 is due to the intersection of the 
two factored load combinations from ASCE/SEI 7 (ASCE, 
2016): 1.4D (dead load only) and 1.2D + 1.6L. By equating 
these two loading situations with mean loads, one obtains 
(L/D) = 0.168. The resistance factor using the AISI S100-16 
approach is 0.857.

Based on Chord Sidewall Slenderness

A mathematical manipulation of the equations describing 
the critical yield stress for columns in axial compression 
was performed to determine the relative contribution of each 
distinct property to the material statistical parameters. The 
material statistical parameters depend on the yield stress, 
radius of gyration (which in turn depends on the thickness), 
and modulus of elasticity. The statistical parameters were 
taken as δr = 0.975 and Vr = 0.025 for radius of gyration and 
δE = 1.000 and VE = 0.019 for modulus of elasticity, from 
Kennedy and Gad Aly (1980). Although δM and VM can be 
shown to vary with the chord sidewall slenderness, material 
statistical parameters at the average chord sidewall slender-
ness of the combined database were chosen to determine 
the resistance factors for the various methods. The average 
slenderness of the database is 0.619, which results in δM = 
1.134 and VM = 0.070.

For the separation factor approach, these material statis-
tical parameters do not change the resistance factor deter-
mined previously because the separation factor approach 
(as used herein) is based on only the professional factor 
parameters. The expanded separation factor approach, on 

Fig. 4. Resistance factor for the Wei and Packer (2021) proposed buckling method, using the  
approximate FORM analysis in CSA S408-11, with material statistical parameters based on yield stress.
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compression buckling resistance are the material strength 
(yield stress), modulus of elasticity, chord thickness, chord 
height, branch height, and the professional factor.

Material strength variations for ASTM A500 dual-
certified Grade B/C rectangular HSS compiled by Liu 
(2016) were used (Figure 6), from which the raw data (nt = 
3018) was obtained. The continuous curve (red line) in 
Figure  6, and subsequent histograms for variables, repre-
sents the best-fit log-normal distribution using the afore-
mentioned iterative MLE technique. Statistical parameters 
given in the figures pertain to the histograms.

For modulus of elasticity, the variation determined by 
Galambos and Ravindra (1978) was used. A log-normal 
distribution was created (on the basis of its limitation to 

the other hand, produces a resistance factor of 0.894 (com-
pared to 0.917 previously). For the approximate FORM 
analysis in CSA S408-11, the resistance factors over a range 
of L/D values are shown in Figure 5 and these can be seen 
to be lower than those in Figure 4, and for the AISI S100-16 
reliability method, statistical parameters based on chord 
sidewall slenderness do not meet the material requirements 
of Chapter K; thus, the resistance factor is retained as the 
one determined with just the yield stress (0.857).

Participating Variables for MCS

As can be seen in Table 1, the participating random vari-
ables in the Wei and Packer (2021) method for sidewall 

Fig. 5. Resistance factor for the Wei and Packer (2021) proposed buckling method, using the approximate  
FORM analysis in CSA S408-11, with material statistical parameters based on chord sidewall slenderness.

Fig. 6. ASTM A500 dual-certified Grade B/C rectangular HSS yield stress variation (Liu, 2016).
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whereas variations in live load can generally be described 
by a Gumbel distribution (Ellingwood and Culver, 1977). 
Herein, an equivalent log-normal distribution for the varia-
tions of dead load was created, per Ellingwood et al., 
based on the statistical parameters for normal distribution 
given in Schmidt and Bartlett (2002). For the live load, an 
equivalent log-normal distribution, as derived by Schmidt 
and Bartlett, has been used. Samples were then taken from 
these distributions.

MCS Method

A representative set of 19 full-width (β = 1.0) connections, 
listed in Table 3, was formulated for rectangular HSS-to-
HSS axially loaded cross connections, covering the para-
metric range of 17.2 ≤ 2γ∗ ≤ 45.8, 0.33 ≤ Hb/Hsinθ ≤ 2.83, 
and 45° ≤ θ ≤ 90°. A nominal yield stress, Fy, of 50  ksi 
(345  MPa) was used. A reliability index was determined 
using Equation 16 for each one of the representative con-
nections, using a given resistance factor and a particular 
L/D ratio, by sampling 1 million times from the participat-
ing variable distributions. Details of the sampling method, 
using MATLAB, can be found in Rudman (2021). This 

a non-negative value) from the statistical parameters in 
Galambos and Ravindra (1978). Samples were then taken 
from this log-normal distribution.

Geometric variations were determined through the sur-
veys of Kennedy and Gad Aly (1980). The raw data for the 
rectangular HSS thickness (nt = 302) and height (nt = 149) 
surveys could not be obtained, so sampling was performed 
directly from the histograms. The sampling procedure fol-
lowed was to select a histogram bin with probability pro-
portional to its reported frequency, then to simulate a value 
uniformly within the limits of the bin (Xi and Packer, 2021). 
Figures 7 and 8 show the geometric variations used.

Professional factor variations were obtained from the 
combined database compiled herein by comparing the 
actual connection strength with the nominal strength pre-
dicted by Wei and Packer (2021). Sampling was thus per-
formed from the histogram in Figure 9. Professional factors 
were not binned into various combinations (by branch 
angle, chord sidewall slenderness, and bearing length) as 
the number of tests within each bin would, in that case, be 
too minimal.

For the load effect, variations in dead load generally 
resemble a normal distribution (Ellingwood et al., 1980), 

Table 3. Representative Connections for Monte Carlo Simulation

Connection 
Number

Chord  
Member  
H ×× B ×× t

Branch 
Member  

Hb ×× Bb ×× tb
H 

(in.)
t 

(in.)
Hb 
(in.)

θθ 
(°) Hb//Hsinθθ H//t

1 6×6×a 3×6×a 6.00 0.349 3.00 90 0.50 17.2

2 6×6×a 6×6×a 6.00 0.349 6.00 90 1.00 17.2

3 6×6×a 12×6×a 6.00 0.349 12.0 90 2.00 17.2

4 6×6×a 12×6×a 6.00 0.349 12.0 60 2.31 17.2

5 6×6×a 12×6×a 6.00 0.349 12.0 45 2.83 17.2

6 8×8×a 4×8×a 8.00 0.349 4.00 90 0.50 22.9

7 8×8×a 8×8×a 8.00 0.349 8.00 90 1.00 22.9

8 8×8×a 12×8×a 8.00 0.349 12.0 90 1.50 22.9

9 8×8×a 8×8×a 8.00 0.349 8.00 60 1.16 22.9

10 8×8×a 8×8×a 8.00 0.349 8.00 45 1.41 22.9

11 12×12×a 12×4×a 12.0 0.349 4.00 90 0.33 34.4

12 12×12×a 12×6×a 12.0 0.349 6.00 90 0.50 34.4

13 12×12×a 12×8×a 12.0 0.349 8.00 90 0.67 34.4

14 12×12×a 12×12×a 12.0 0.349 12.0 90 1.00 34.4

15 12×12×a 12×12×a 12.0 0.349 12.0 60 1.16 34.4

16 12×12×a 12×12×a 12.0 0.349 12.0 45 1.41 34.4

17 16×16×a 16×8×a 16.0 0.349 8.00 90 0.50 45.8

18 16×16×a 16×12×a 16.0 0.349 12.0 90 0.67 45.8

19 16×16×a 16×16×a 16.0 0.349 16.0 90 1.00 45.8
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Fig. 7. Rectangular HSS depth and width variation data by Kennedy and Gad Aly (1980).

Fig. 8. Rectangular HSS thickness variation data by Kennedy and Gad Aly (1980).

Fig. 9. Professional factors using the Wei and Packer (2021) proposed buckling method.
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procedure was then repeated for a range of L/D ratios from 
0 to 3.0; for resistance factors of 0.8, 0.85 and 0.90; and 
for each representative connection. For all simulations, the 
overall load effect distribution is approximately log-normal, 
and similarly, the resistance distribution is approximately 
log-normal, despite deviations from log-normality in the 
material survey and professional factor data, as shown pre-
viously. Thus, Equation 16, where the resistance and load 
effect distributions are both log-normal, can be used. Fig-
ures  10 and 11 display typical resistance and load effect 
distributions, respectively, determined for the set of repre-
sentative connections.

MCS Results

A reliability index at each L/D ratio and resistance factor 
was determined by taking the average reliability index from 
each of the 19 connections. Figure 12 shows that ϕ = 0.90 
achieves suitable results as the reliability index is greater 

than 3.0 for the majority of the L/D ratios investigated and 
does not fall below 2.6 for any L/D ratio, which is the mini-
mum that is currently expected (Commentary to 2016 AISC 
Specification Section B3.1).

The 19 representative connections cover the key vari-
ables in rectangular HSS-to-HSS cross connections. To 
investigate the chord sidewall slenderness effect, the aver-
age reliability index at each L/D ratio was determined for 
connections with the same chord sidewall slenderness (17.2, 
22.9, 34.4, and 45.8, in the set of representative connec-
tions). Figure 13 shows that the reliability index decreases 
by about 0.1 when the chord sidewall slenderness is high 
(45.8). This is an expected result and is a reason the upper 
limits of validity have been set on chord sidewall slender-
ness in rectangular HSS cross connections. To investigate 
the bearing length effect, the average reliability index at 
each L/D ratio was determined for the connections in three 
categories: bearing length ratio (Hb/Hsinθ) less than 1.0, 

Fig. 10. Resistance for Connection 6, with L/D = 1.0 and ϕ = 0.90.

Fig. 11. Load effect for Connection 6, with L/D = 1.0 and ϕ = 0.90.
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Fig. 12. Reliability index vs. L/D ratio for the Wei and Packer (2021)  
proposed buckling method, using a MCS with various ϕ factors.

Fig. 13. Effect of chord sidewall slenderness on reliability index, for the  
Wei and Packer (2021) proposed buckling method, by MCS with ϕ = 0.90.



330 / ENGINEERING JOURNAL / FOURTH QUARTER / 2022

Fig. 14. Effect of bearing length on reliability index, for the Wei and  
Packer (2021) proposed buckling method, by MCS with ϕ = 0.90.

bearing length ratio between 1.0 and 2.0, and bearing length 
ratio greater than 2.0. Figure 14 illustrates that the bearing 
length effect is captured well by the proposed method.

SUMMARY

The closed-formed solution methods produce a resistance 
factor based on an input target reliability index, whereas the 
MCS method used herein produces a reliability index given 
a resistance factor. In order to compare the various reliabil-
ity methods, the closed-formed solutions were manipulated 
to input a resistance factor and output a reliability index. 
The AISI S100-16 method is henceforth discounted due to 
its set target reliability of 2.5; the target reliability index for 
all other closed-form methods and the MCS method is 3.0. 
The separation factor approach and the expanded separa-
tion factor approach are independent of the L/D ratio; there-
fore, the reliability index for these methods applies to all 
L/D ratios. Figures 15 and 16 compare each of the methods, 
using ϕ = 0.90.

The closed-form equations using the material statistical 
parameters adjusted for slenderness produce more conser-
vative estimates of the reliability index compared to the 
yield stress material statistical parameters. This is expected 
as the mean-to-nominal ratio of the material statistical 
parameters adjusted for slenderness is lower.

MCS is a numerical method and is the most accurate 
reliability analysis. Using the yield stress parameters, the 
approximate FORM analysis in CSA S408-11 produces 
reliability index values that are within 0.10 of the MCS for 
all L/D ratios (Figure 15). Using the parameters adjusted for 
slenderness, the approximate FORM analysis in CSA S408-
11 produces statistically indistinguishable reliability index 
values for L/D ≤ 0.50, and values within 0.25 of the MCS 
(but on the conservative side) for L/D > 0.50 (Figure 16).

The expanded separation factor approach generates an 
unconservative reliability index value for L/D ≤ 0.50, no 
matter which set of material statistical parameters are used. 
For L/D > 0.50, the yield stress parameters produce a sur-
prisingly accurate reliability index value that is within 0.05 
of the MCS values, while the parameters adjusted for slen-
derness produce a conservative reliability index value by 
about 0.30. The closed-form equations using the material 
statistical parameters of the yield stress create more accu-
rate predictions of the reliability index (measured against 
MCS) than the case of material parameters adjusted for 
slenderness. All further comparisons are therefore based on 
the closed-form equations using yield stress material statis-
tical parameters.

The separation factor approach produces extremely 
conservative predictions of the reliability index. This is 
expected since it only accounts for the professional factor. 
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Fig. 15. Reliability index vs. L/D ratio for the Wei and Packer (2021) proposed buckling method,  
using closed-form solutions and MCS, with yield stress material statistical parameters.

Fig. 16. Reliability index vs. L/D ratio for the Wei and Packer (2021) proposed buckling method,  
using closed-form solutions and MCS, with material statistical parameters adjusted for chord slenderness.
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Fig. 17. Reliability index vs. L/D ratio for Wei and Packer (2021) proposed local  
yielding equation, using the approximate FORM analysis in CSA S408-11.

The expanded separation factor approach method produces 
much better predictions of the reliability index than the sep-
aration factor approach because it accounts for the material, 
geometric, and strength properties, as well as the profes-
sional factor. The material strength property (Fy) actual-
to-nominal ratio usually has a mean (bias) much greater 
than 1.0 for HSS, and this is the main contributing factor 
in generating higher predictions for the reliability index. 
The expanded separation factor approach can still produce 
unconservative results for L/D < 1.0. For steel buildings, 
however, typical design L/D ratios exceed 1.0, and the 
expanded separation factor approach provides accurate pre-
dictions in this L/D range due to the uncertainties in live 
loading.

The approximate FORM analysis from CSA S408-11 
thus appears ideal for determining the reliability index of 
HSS connections. This method illustrates the dependency 
of the reliability index on the L/D ratio and generates results 
that are very similar to MCS, yet requires much less time 
and effort to complete. From the preceding analysis, it can 
be concluded that, for the Wei and Packer (2021) proposed 
buckling method, ϕ = 0.90 is appropriate. With this resis-
tance factor, the reliability index is greater than 3.0 for the 
majority of the L/D ratios assessed and does not fall below 
2.6 for any L/D ratio—the minimum currently expected 
(Commentary to the 2016 AISC Specification Section B3.1).

SIDEWALL LOCAL YIELDING

The approximate FORM analysis from CSA S408-11 was 
also used to evaluate Equation 1 (Table 1) for the sidewall 

local yielding limit state by using the existing database 
from Wei and Packer (2021). The resulting professional fac-
tor statistical parameters for Equation 1, in conjunction with 
this database, are δP = 1.193 and VP = 0.150 (Xi and Packer, 
2021). Figure 17 shows the reliability index determined for 
the range of L/D ratios with ϕ = 1.0. The reliability index is 
greater than 3.0 for most L/D ratios assessed and does not 
fall below 2.6 for any L/D ratio, thus supporting the choice 
of ϕ = 1.0 for the Wei and Packer (2021) proposed local 
yielding design equation.

CONCLUSION

Several alternative methods for predicting the nominal 
strength of HSS webs under local compression loading are 
evaluated using a large contemporary database of experi-
mental and numerical results totaling 227 tests. For rect-
angular HSS-to-HSS full-width cross connections under 
branch axial compression, it is found that the proposal of 
Wei and Packer (2021) accurately predicts the connection 
strength, without the further modifications suggested by 
Kim and Lee (2021). It is thus recommended that the Wei 
and Packer (2021) proposed approach for chord sidewall 
compression on rectangular HSS-to-HSS axially loaded 
cross connections (given in Table  1) be adopted. Monte 
Carlo simulation shows that the reliability index decreases 
for connections with a high chord sidewall slenderness; it 
is therefore recommended that the limit on chord sidewall 
slenderness be H/t ≤ 35. Three key points for the Commen-
tary to the AISC Specification, to facilitate the application 
of Chapter J to rectangular HSS sidewall compression, are:
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Cp Correction factor for sample size

Cϕ Calibration coefficient

D Dead load, kips

E Modulus of elasticity of HSS member, ksi

Fcr Critical buckling stress of HSS chord member, ksi

Fk Chord sidewall failure stress, including a reduction 
for application to design, ksi

Fy Yield stress of HSS chord member, ksi

G Ratio of actual-to-nominal geometric property

H Height of rectangular HSS chord member, parallel to 
the plane of the connection, in.

Hb Height of rectangular HSS branch member, parallel to 
the plane of the connection, in.

K Effective length factor

L Live load, kips; length of member, in.

Lc Effective length of the member = KL, in.

M Ratio of actual-to-nominal material property

N1u Axial ultimate strength of a connection for a test (or 
numerical calculation), expressed as a force in the 
branch, kips

NAISC Axial ultimate strength of a connection, per the AISC 
Specification, expressed as a force in the branch, kips

NKL Axial ultimate strength of a connection, per Kim and 
Lee (2021), expressed as a force in the branch, kips

NL Axial ultimate strength of a connection, per Lan et al. 
(2021), expressed as a force in the branch, kips

NWP Axial ultimate strength of a connection, per Wei and 
Packer (2021), expressed as a force in the branch, 
kips

P Professional factor = ratio of observed capacity in tests 
(experimental or numerical) to predicted capacity

Pn Connection nominal strength, kips

Qf Chord-stress interaction parameter

R Resistance, kips

Rm Mean resistance, kips

Rn Nominal resistance, kips

Rt  Tested resistance/strength, kips

S Load effect, kips

Sm Mean load effect, kips

1. An effective length factor of K = 0.65 is recommended 
because it represents the fixed-fixed end condition for the 
chord sidewalls, in welded connections.

2. The Fcr equation (column buckling method) should be 
used for a bearing length greater than 0.25 of the chord 
depth.

3. The branch angle of inclination should not be considered 
because assuming only vertical force components is 
conservative, pragmatic, and simple.

A reliability analysis was performed for the Wei and 
Packer (2021) proposed web compression buckling method. 
This was assessed using various closed-form methods as 
well as a Monte Carlo simulation. Comparing all the reli-
ability methods, an approximate FORM analysis given in 
CSA S408-11 produced excellent results, comparable to 
Monte Carlo simulation. The approximate FORM analysis 
generates a reliability index for any desired live-to-dead 
load ratio, avoids the complexity of Monte Carlo simula-
tion, and is recommended. The review and application of 
contemporary reliability methods herein is instructive for 
other researchers determining resistance factors.

For the Wei and Packer (2021) proposed method for the 
web compression buckling limit state, a resistance factor 
of ϕ = 0.90 is recommended, which is also the same value 
used for compression members in the AISC Specification 
Section E1. This resistance factor is included in Table 1 to 
determine available connection strength. The approximate 
FORM analysis in CSA S408-11 was also applied to evalu-
ate the Wei and Packer (2021) proposed method for the web 
local yielding limit state, and a resistance factor of ϕ = 1.00 
is recommended. This is also the same value as used for this 
limit state in the AISC Specification Section J10.2, and this 
resistance factor is given for Equation 1 in Table 1.
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SYMBOLS

Ag Cross-sectional area of element, in.2

B Width of rectangular HSS chord member, perpen-
dicular to the plane of the connection, in.

Bb Width of rectangular HSS branch member, perpen-
dicular to the plane of the connection, in.

Cf Material factor
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Sn Nominal load effect, kips

VD Coefficient of variation for dead load

VE Coefficient of variation for modulus of elasticity

VG Coefficient of variation for relevant geometric 
properties

VL Coefficient of variation for live load

VM Coefficient of variation for relevant material 
properties

VP Coefficient of variation associated with δP

VR Coefficient of variation for resistance

Vr Coefficient of variation for radius of gyration

VS Coefficient of variation for load effect

g Safety margin

gm Mean of the safety margin

i Subscript that denotes the load effect under 
consideration (dead, live, etc.); subscript that denotes 
an individual test

lb Bearing length of the load, measured parallel to the 
axis of the chord member, in.

lend Distance from the near side of the connecting branch 
or plate to the end of chord, in.

m Degrees of freedom, nt − 1

n0 Ratio of stress in the chord connecting face to the 
chord yield stress (+ indicates chord tensile stress; − 
indicates chord compressive stress)

nt Number of tests

pF Probability of failure

r Radius of gyration, in.

t Design wall thickness of rectangular HSS chord 
member, in.

tb Design wall thickness of rectangular HSS branch 
member, in.

Ω Safety factor

α Coefficient of separation, generally taken as 0.55

αD Load factor for dead load

αL Load factor for live load

β Ratio of branch width to chord width (Bb/B), 
perpendicular to the plane of the connection

β+ Reliability or safety index

2γ Ratio of chord width to wall thickness for rectangular 
HSS (B/t)

2γ∗ Ratio of chord height to wall thickness for rectangular 
HSS (H/t)

δD Ratio of mean to nominal for dead load

δE Ratio of mean to nominal for modulus of elasticity

δG Mean value of G

δL Ratio of mean to nominal for live load

δM Mean value of M

δP Mean value of P

δR Ratio of mean to nominal for resistance

δr Ratio of mean to nominal for radius of gyration

δS Ratio of mean to nominal for load effect

η Ratio of branch height to chord width for rectangular 
HSS (Hb/B)

η∗ Ratio of branch height to chord height for rectangular 
HSS (Hb/H)

θ  Acute angle between the branch and chord, degrees

θC Central safety factor

λ Slenderness of a column or chord sidewall = KL/r
λ0.65 Nondimensional chord sidewall slenderness with an 

effective length factor of 0.65

λ1.0 Nondimensional chord sidewall slenderness with an 
effective length factor of 1.0

λC Nondimensional chord sidewall slenderness

λKL Nondimensional chord sidewall slenderness with the 
Kim and Lee (2021) effective length factor

σP  Standard deviation of the ratio of actual-to-nominal 
strength

σR  Standard deviation of R

σS  Standard deviation of S

σg  Standard deviation of g

ϕ Resistance factor

χ Reduction factor for (column) buckling
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