
Plastic Design of Eccentrically Loaded Fasteners 
A. L. ABOLITZ 

BOLTS, rivets, and other fasteners in structural connec
tions are often used in single or multiple shear. If the 
force incident upon a group of such fasteners is eccentric, 
the fastener group is subjected to a moment in addition to 
the force. The capacity of the group to transmit force is 
in general reduced if a moment must be transmitted at 
the same time. For each group of fasteners and for each 
direction of force a relationship exists between the values 
of the force F and of the moment M that may be applied 
simultaneously. This relationship may be termed inter
action, and is usually expressed in formulas, curves or 
tables. In many published tables the eccentricity E, 
rather than the moment M, is used, but by means of the 
relationship M = FE these tables can be easily converted 
to the type which gives M versus F. 

A knowledge of the interaction is indispensable for 
the design or checking of a group of fasteners under an 
eccentric load. 

A fastener group is sometimes loaded by a pure force 
F0, without any moment. The capacity of a group for 
pure force F0 is simply the sum of the capacities of the 
individual fasteners. A group may also be subjected to a 
pure moment M0 , unaccompanied by force; an example 
is furnished by the bolts in a flanged connection trans
mitting power in a rotating shaft. The capacity of a 
group for pure moment M 0 is the sum of the contribu
tions of the individual fasteners; this individual contribu
tion is the force exerted by the fastener times the distance 
to the center of rotation. 

In this paper interaction curves and formulas are 
given not in terms of M and F, but in terms of the dimen-
sionless fractions m and / , where m = M/M0 and / = 
F/F0. Also, for the present purpose, the faying area of a 
fastener group is considered to extend to a point located 
one-half the fastener spacing beyond the extreme 
fastener, and the overall dimension or diagonal D 
refers to this faying area. Thus D for a line of bolts* 3 in. 
on centers with 5 bolts in the line is 15 in. (not 12 in.). 

A. L. Abolitz is Structural Engineer, Mueser-Rutledge-Wentworth-
Johnston, New York, N. Y. 

* Wherever the word "bolts" appears in this paper it should be 
understood to refer to any type of fastener. 

Similarly, D for a group of 2 such lines 4 in. on centers 
is the diagonal of an 8 x 15-in. rectangle, which is 17 in. 

The importance of the problem of fastener groups 
under eccentric loading has long been recognized. The 
traditional method of calculating interaction was based 
on the elastic theory and assumed that the resisting 
force of each fastener against rotation about a center 
was proportional to its distance from the center, so that 
the fastener at the greatest distance from this center 
would exert its full resistance, while the nearer fasteners 
would exert only a fraction of their full resistance. This 
elastic method underestimates the capacity of fastener 
groups subject to sizeable moments. 

More recently this fact has been recognized, and on 
the basis of tests (described by Mr. T. R. Higgins in 
Engineering News Record, May 21, 1964) an empirical 
method employing "effective" eccentricities has been 
evolved and incorporated in the current 6th Edition of 
the AISC Manual . This AISC Manual method gives 
results in better agreement with the actual strength of 
fastener groups over a considerable range, and is there
fore a great improvement over the elastic method. 
Nevertheless it suffers from several shortcomings: It 
applies only to one direction of force; it is not easily 
adaptable to fastener groups not tabulated in the 
Manua l ; it is too conservative for large eccentricities and 
too liberal for small eccentricities; and its empirical 
nature and lack of a rational basis is intellectually 
unsatisfying. 

A third method, set forth in this paper, involves the 
use of the plastic theory. This theory postulates that 
under heavy stress each fastener will exert its full re
sistance, irrespective of its location. On this basis the 
interaction for a given fastener group can be calculated. 
In Fig. 1 the results of the tests reported by Mr. Higgins 
are plotted together with the relevant interaction curves 
found by the plastic method, and it will be seen that the 
differences are well within a reasonable allowance for 
experimental scatter. The plastic method appears to 
agree with experimental evidence and to be largely free 
of the shortcomings of the other two methods. 

Interaction formulas and curves based on the plastic 
method have been worked out in "Mathematical Deri-
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vations," which follows. These have been plotted for 
some regular bolt layouts in Figs. 2 through 6, and 
summarized in Table I. Examples illustrate the applica
tion of these formulas and curves. 

The assumptions underlying the plastic method, as 
well as the resulting charts, are valid for any structural 
elements uniformly resisting a "rigid body" displace
ment; for example, they may be used in analyzing a 
group of piles under an eccentric wind or earthquake 
load. The principal limitation on the plastic method 
hinges on the attainment of the full plastic capacity. 
If this is questionable because of dynamic effects and 
fatigue, embrittlement due to extremely cold tempera
tures, or other causes, the plastic method should not be 
used pending further research. 

Groups of fasteners in tension, or in tension combined 
with shear, are in general suitable for plastic analysis. 
The formulas and charts given here must, however, be 
modified for use in such cases. 

The formulas and charts apply to welds as well as to 
fasteners. However, full plastic capacity must be assured 
in all cases. I t is hoped that future experimental and 
theoretical research and practical experience with the 
plastic method will result in important refinements and a 
widened scope of application. 

MATHEMATICAL DERIVATIONS 

Nomenclature 

A Faying area of fastener group, sq in. 
B Load carrying capacity of one fastener, kips 
B\ B/b, kips/in. 
B2 B/A, kips/sq in. 
D Overall dimension or diagonal of faying area, in. 
E Eccentricity M/F, in. 
F Resultant force on fastener group, kips 
F0 Carrying capacity of fastener group for force 

through G, kips 

Ultimate Moment -M Versus Force- F, For Groups Of Fasteners 
Per Kip Of Ultimate Fastener Value 

= A.I.S.C. TESTS 
ENGINEERING NEWS RECORD 
MAY 21, 1964 
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H Component of F in the ^-direction, kips 
/ Polar moment of inertia of the Z?-values of the 

fastener group about an axis normal to the faying 
surface, kips X sq in. 

M Moment of F about O or moment generally, kip-in. 
M 0 Carrying capacity of fastener group for moment 

without force, kip-in. 
N Number of fasteners in the group 
R Distance from a center to the most remote fastener, 

in. 
V Component of F in the ^-direction, kips 
C Center of rotation of fastener group under the given 

force 

G Center of gravity of the 5-values of the fastener 
group. 

O Center of rotation of the fastener group under a 
moment without force. 

b Fastener spacing, center to center, in. 

/ w 
h H/F0 

k Mo/DFo 
m M/M0 

n Number of bolts in line. 
r Distance from a cen'ter to any fastener, in. 
v V/F0 

Additional symbols are explained where they occur. 
The line or lines of fasteners are placed parallel to the y-
axis, unless otherwise shown. Mathematical symbols and 
subscripts (except the subscript 0) have their usual 
significance; " log" denotes a natural logarithm. 

General Relation—In any bolt group, regular or 
irregular, whenever all bolt forces B act in the same 
direction, their resultant passes through the center of 
gravity G, is parallel to the forces, and is equal to their 
sum. This resultant is denoted by F0 , and 

F0 = m (la) 

If all the bolts are equal, i.e., have the same B, and if the 
number of the bolts in the group is JV, 

F 0 = NB ( lb) 

If the bolts are uniformly spaced in a line of faying length 
D, as previously defined, and their resistance per unit 
length is Bh 

F 0 = DBX (lc) 

Finally, if the bolts are uniformly spaced over a faying 

Table I 

Description of Fastener Group 

2 bolts 

3 bolts in line 

More than 3 bolts in one line or in 
a narrow rectangle 

Bolts forming rectangle with side 
ratio 1:2 

4 bolts at the corners of a square 
diamond 

Bolts forming a square faying area 

Pure 
Moment M0 

= Y± F0D 

= % FoD 

^ 0 . 2 5 F0D 

^ 0 . 2 6 5 FoD 

= K F«D 

« 0 . 2 7 FoD 

Interaction Formulas and Curves 

Force Parallel to Longer 
Axis of Faying Area 

Formula 

/* + m2 = 1 

34(3/ - l)2 + m2 = 1 
and m ^ 1 

/ « tan j8 loge cot J^/3 
/ sin j8 + m cos /3 ^ 1 

Use chart 

In the range 0.854 > 
/ > 0 . 3 5 4 , / + m 
= 1.207 

Use chart 

Fig. 
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Force Normal to Longer Axis 

Formula 

f + m = \ 

}iOf - 1) + m = 1 
and m ^ 1 

f + m « 1 

Use chart 

Same formula 

Use chart 

Fig. 
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area A, and their resistance per unit area is B2, 

F0 = AB2 ( Id) 

Whenever the resultant force F acting on a bolt 
group is not a pure force (does not pass through the 
center of gravity G), the group will tend to rotate about 
some point C, called the center of rotation, and each 
bolt reaction will be perpendicular to the radius rc drawn 
from C to the bolt in question. Thus the reactions will no 
longer be parallel to each other, and their resultant will 
be smaller than their numerical (scalar) sum. Therefore 
the greatest force that may be resisted by a bolt group is 
F0, so that F/F0, also denoted / , is always a fraction not 
greater than 1. 

The foregoing holds for both the traditional elastic 
(strictly speaking, quasi-elastic) method and for the plas
tic method. The basic difference between the two 
methods is manifested when the value of each bolt 
reaction is considered. If the distance from the center C 
to the bolt most remote from it is Rc, then, in the elastic 
method, the bolt reaction is Brc/Rc, its moment about C 
is Brc

2/Rc, and the moment about C for the whole group is 

Elastic Mc = 2Brc
2/Rc = Ic/Rc (2) 

(In the following, the discussion refers to the plastic 
method only, unless specifically stated otherwise.) 

In the plastic method, as already mentioned, the bolt 
reaction is simply B (regardless of how far from C the bolt 
is located), its moment about C is Brc, and for the whole 
group 

Mc = XBrc (3a) 

or, for equal bolts, 

Mc = BXrc (3b) 

If all the bolts are equidistant from C, 

Mc = (XB)rc = F0rc (3c) 

If all the bolts are uniformly spaced in a faying line of 
length Z), 

Mc = B1fDrcdD (3d) 

and if they are uniformly spaced over an area A, 

Mc = B2fArcdA (3e) 

If the area is that of a circle or a circular sector with 
center C, radius R, and angle 0, then dA = rdddr, and 

Mt = B2f Cr{rd6dr) = VsB2R*d = %{B2y2R?6)R 
Jo Jo 

= %F0R (3f) 

For an area in the shape of a right triangle, refer to Fig. 8. 
In the triangle CPB draw two rays a small angle dd 
apart from C to PB. The area between the rays may be 
treated as a circular sector of radius l± sec 0 and angle dd. 

dH 

H 
-I 

;—r 

L 

Figure < 

For such a sector dMc = }/^B2(li sec 0)V0; integrate 
for the whole triangle, obtaining 

Mc = }/§B2 /i [sec 7 tan y + log (sec y + tan y) ] 

= ysF0R(l + sin fi tan 0 log cot ]/2B) (3g) 

For comparison, the elastic 

Mc = ysF0R(y2 + sin2 0) (3h) 

The right triangle just discussed is mainly useful 
because oblique triangles, rectangles and polygons 
generally can be subdivided into right triangles. For 
example, a regular hexagon may be broken up into 12 
right triangles with /3 = 60°. For C at the center of the 
hexagon, the moment values are: plastic, 0.303 F0D; 
elastic, 0.208 F0D. This example demonstrates that the 
difference between the two methods may be very con
siderable. 

I t will be noted that the plastic Mc 's of several bolt 
groups are additive, provided, of course, they all refer 
to the same center. Similarly, if a subgroup is removed 
from a larger bolt group, the Mc of-the remaining bolts 
equals the difference of the Mc 's of the group and the 
subgroup. This observation is often useful in computa
tion. 

If the center of rotation C is known, the resistance of a 
bolt group may be found in the manner indicated in 
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Fig. 7. The resistance B of a bolt with coordinates x and 
y, referred to any origin A, is given by the following: 

V = B sin P;H' = B cos 0; MA' = 
/ f ^ + V'x (4a, b, c) 

The vertical force V (parallel to thejy-axis), the horizontal 
force H (parallel to the x-axis), and the moment MA 

may be found by summing V, H\ and MA for the 
whole bolt group. 

I t is of interest to find, for a given bolt group, the 
location of C at which Mc is a minimum. Call this point 0 
and the corresponding moment M0. Since M 0 = 2Br0, 
we may instead locate 0 for the condition 2Br0 = mini
mum. Differentiating with respect to any direction x, 
2Bdr0/dx = 2Bx/r0 = 0. Denoting the angle between 
each r0 and the ^-direction by 0, the expression locating 
0 may be written: 

2 £ cos 6 = 0; or, for equal bolts, 2 cos 6 = 0 (5a, b) 

I t will be noted that the component of the bolt reaction 
in the x-direction is H' = B cos 0 (Equation (4b)). 
B cos 6 = 0 therefore means that the total component of 
the reaction of the group in any arbitrary ^-direction is 
zero. In other words, the minimum moment M 0 is a pure 
moment ; this is why, elsewhere in this paper, 0 is termed 
the center of pure rotation. 

To avoid any misunderstanding, it is emphasized 
that a pure force passes not through 0 but through the 
center of gravity G, as previously noted. Now the ex
pression locating G is not Equation (5) but a different 
one, viz, 2BrG cos 6 = 0. Thus the center of pure rotation 
0 and the center of gravity G are not necessarily the same. 
For irregular bolt layouts—those lacking symmetry 
about either axis—they are in fact generally distinct 
points. For examples of this see Figs. 10 and 14. 

Equation (5) has an interesting consequence. Sup
pose the center 0 has been correctly located for a bolt 
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group. Draw rays from 0 to the bolts. The bolts may be 
shifted any distance along the rays, toward 0 or away 
from it, without affecting the location of the center of 
pure rotation. As an example, this center for a group of 
4 bolts located at the corners of a quadrilateral, even an 
irregular one, is at the intersection of the diagonals. 

Pure Moment—The calculation of M0 is essential for 
the plastic method. For regular bolt layouts—those 
symmetrical about two axes—this is facilitated by the 
fact that both 0 and G are obviously located at the 
origin of coordinates. 

In the case of n bolts, each of capacity B, spaced b 
inches apart in a single line, the overall faying dimension 
D is nb, F0 = nB, and for odd numbered n, 

sin a sin fi 

Mo = \)Bb <-£) 
For even numbered n, also for large n, 

M 0 = Y^Bb = Y^Fd) 

For comparison, the elastic 

Ma = yeF0D 

F0D (6a) 

(6b) 

(6c) 

A rectangular faying area may be cut up into 8 equal 
right triangles, each with a vertex at the center of the 
rectangle. Equation 3(g) may now be used on the tri
angles, and the sum of their MG's about the center of the 
rectangle is the required M0 of the rectangle. Writing 
M0 = kF0D, k is taken as Y2 the values of MJabc in 
Fig. 9. The values of A; vary within a narrow range, from 
0.27 for a square to 0.25 for a very long rectangle. 

Force in Any Direction Combined with Moment— 
The pure force F0 and the pure moment M0 having been 
discussed, attention will now be directed towards the 
usual case of force combined with moment. The force F 
in general has components V and H parallel to the y- and 
#-axes. The fractions v and h stand for V/F0 and H/F0, 
and m for M/M0, as before. Referring again to Fig. 8, 
note that 

and 

lt = CP = D sin a sin ft/sin (a + P) 

l2 = OP = D sin (a - p)/2 sin (a + p) 

To deal with the case of numerous bolts uniformly 
spaced in a line of faying length Z), draw two rays a small 
angle dd apart, as before. 

The intercept, dy, between the same rays is equal to 
h sec2 6 dd and dV/dy = Bx cos 6; dH/dy = Bx sin 0; 
dM/dH = /1 tan 6 — /2. Integrating these expressions, 

sin a sin P 

sin (a + (3) 

sin (a + p) 
(8a) 

For a 

For a 

2 sin a sin ft 
m = - — 

sin {a + P) 

"cos a + cos P 

sin {a + P) 

= 90° these equations reduce to 

v = tan p log cot 3 î̂  

h = tan J^(90 - p) 

m = 2 tan /3(1 — v) 

= P they reduce to 

(9a) 

(7b) 

(8b) 

(9b) 

v = tan p log cot Y2P (7b (repeated)) 

h = 0 

m = sec P — v tan P 

(8c) 

(9c) 

The procedure for calculating V, H and Mc for a 
polygonal faying area is to join C to the corners of the 
polygon and to treat the polygon as a sum and /or differ
ence of triangles, each with a vertex at C. After V and H 
have been found, F is given by the Pythagorean The
orem, and its direction is given by the ratio H/V. By 
locating C at a sufficient number of points and carrying 
out the requisite calculations the relationships between 
mc, h/v and / may be determined with sufficient accuracy 
for tabulation or plotting. Some results of this procedure 
for rectangles are shown in Figs. 4 and 9. 

If the force F is in the y-direction, C is located on the pr
axis of symmetry (provided the bolt pattern is symmetri
cal about this axis). This simplifies the calculations. 
Results for some common bolt layouts follow: 

Two bolts: V = 2B sin p; M = Bb cos p. Therefore, 
f + m2 = 1 (see Fig. 2). 

Three bolts in line: When P > 0, V = B + 2B sin P; 
when C is at the center bolt (/5 = 0), + 1 > V > — 1; 
in all cases, M = 2Bb cos p; therefore: for f > yi, 
1^(3/ - l ) 2 + m2 = 1; and, for / < \i, m = 1 (see 
Fig. 2). 

Numerous equidistant and equal bolts in line: This 
case, previously discussed, is a practical approximation 
for any number of bolts greater than 3. The formulas, 
with some slight rearrangement, are given here again 
(see Fig. 2) : 

/ = tan p log cot yiP 

f sin p + m cos p — 1 

(7b) (repeated) 

(9d) 

log (cot Y2a cot Y2p) (7a) 

These formulas are also usable for the case of 2 lines of 
bolts and narrow rectangular faying areas. An interac
tion curve for rectangles with a side ratio of 1 :2 is given 
in Fig. 4, for 4 bolts at the corners of a square in Fig. 5, 
and for a square faying area in Fig. 6. The data for Fig. 5 
has been calculated using Equations (4), and for Figs. 
4 and 6 by means of the tables of Fig. 9. 
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The case of force in the x-direction may be treated 
similarly. Results for some common bolt layouts follow. 

Two bolts: Here, 3 different positions of C have to be 
considered: (1) Outside the bolts; (2) coincident with a 
bolt; (3) between the bolts. For ( 1 ) , / = 1 and m = 0; 
for (2), / + m = 1; for (3), / = 0 and m = 1 (See 
Fig. 3). 

Several bolts in line: Here, too, the interaction curves 
are made up of straight segments, which, when n is large, 
approximate the parabola / 2 + m = 1. (See Fig. 3.) 

This parabolic curve is also usable for the case of 2 
lines of bolts and narrow rectangular faying areas. The 
case of a rectangle with side ratio 1:2 is dealt with in 
Fig. 4, computed on the same basis as before. For 
square bolt patterns the curves are of course the same as 
for the case of force in the jy-direction. 

Irregular layouts: For an example, see Fig. 10. 
Force oblique to both axes: In the case of an oblique force 
inclined at a given angle 6 to the jy-axis, h/v = tan 6. 

As a rule, points for interaction curves have to be 
obtained by means of Equations (4), (7), (8) and (9), 
using the long forms containing a of the latter three; this 
is somewhat tedious for manual calculation, but may be 
easily programmed for machine computation. Results for 
a few layouts follow: 

Four bolts at the corners of a square, force parallel 
to a diagonal: Draw this diagonal along the #-axis and 
the other diagonal along the jy-axis. C will lie on the y-
axis. 

If C is outside the square, 1 > / > 0.854, 0 < m < 
0.354, and (2/ - l ) 2 + (2m)2 = 1 

If C is at a corner of the square, 0.854 > / > 0.354, 
0.354 < m < 0.854, a n d / + m = 1.207 

If C is inside the square, 0.354 > / > 0, 0.854 < 
m < 1, and (2/)2 + (2m - l ) 2 = 1. (See Fig. 5.) 

Square faying area, force parallel to a diagonal: The 
interaction curve for this case works out to be the same 
as for a force parallel to a side of the square. (See Fig. 6.) 
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Rectangles, including single line {narrow rectangle): 
In a rectangular group the bolts contributing most to its 
pure moment resistance are those located near the ends 
of the diagonals, the reactions of these bolts being normal 
to the diagonals. It may therefore be assumed that the 
most favorable direction of force, i.e., the direction 
yielding the highest interaction curve for the given bolt 
group, is parallel to either diagonal, while the least 
favorable direction is at right angles to either diagonal. 
This assumption is borne out in the case of bolts in a 
single line, for which "best" and "worst" forces run 
parallel to the y- and #-axis respectively. Based on these 
considerations, an approximate rule for rectangles under 
oblique forces is given in Fig. 4. 

EXAMPLES 

Charts are generally more convenient to use than 
formulas. The formulas have been given mainly for the 
benefit of engineers who might wish to prepare tables 
from them. 

When, as often happens, the eccentricity E is given, 
the following observation is helpful. Write M = EF, and 
Mo = kDF0, and divide these expressions by each other, 
obtaining 

(Af/Mo): (F/Fo) = E:kD or m:f = E:kD 

This equation represents a straight line through the 
origin, whose intersection with the appropriate inter-
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action formula gives the required value of / and/or m. 
(See Fig. 11.) Note that the coefficient k is given in 
Table I and in most cases treated here is about }/£. 

M/M0 = m 

INTERACTION CURVE 
FROM FIGS. 2 - 6 

READ OFF F/Fo 

Figure 11 

Example 1 (Fig. 12) 
Given: What force may be imposed at an eccentricity 

of 9 in. on a single line of 10 bolts, 3 in. on centers of 9.0 
kips capacity (a) parallel to the line and (b) perpendicular 
to the line? 

Solution: F0 = 10 X 9.0 = 90 kips 

D = 10 X 3 in. = 3 0 in. 

kD = iy2 in. 

E = 9 in. 

E:kD = 9:7y2 

(a) Force parallel to the line. In Fig. 2 place a straight 
edge on the line m:f = 9:73^. Read off/ = 0.67. 

F = 0.67 X 90 = 62 kips. 
(b) Force perpendicular to the line. In Fig. 3 place a 

straight edge along the same line as in (a). This inter
sects the parabolic interaction curve a t / = 0.565. 

F = 0.565 X 90 = 51 kips. 

For comparison, results by other methods are: 
(a) Elastic, 4 7 ^ kips. (AISG Manual , 7 5 ^ kips.) 
(b) Elastic, 34 kips. (No tables for this case are given 

in the AISC Manual.) 
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Example 2 (Fig. 13) 
Given: The 2 X 5 bolt group shown is loaded by a 

vertical force of 50 kips and, in addition, by a small 

horizontal force at a large eccentricity which produces a 

moment of 150 kip-in. Find the required bolt capacity. 

Solution: Let the bolt capacity be B kips. Then 

F 0 - 105 

D = 17 in. 

k = y 
kD = 4 % in. 

M0 = kDF0 =Aiy2B 

F = 50 

M = F X 9 in. + 150 = 600 

£ = 600/50 = 12 in. 

Use Fig. 4. Place straight edge through the origin and 
the point / = 4 ^ in., m — 12 in. This intersects the 
interaction curve at m = 0.935. 

M/0.935 = 600/0.935 = 4 2 ^ 5 . 

B = 15.1 kips. 

Therefore M0 

Example 3 (Fig. 14) 
Given: Five of the bolts of Fig. 12 have been replaced 

with four larger bolts, of capacity 18.4 kips each, as 
shown. What is the greatest vertical force that may be 
imposed at a 9 in. eccentricity? 

Solution: F0 = 5 X 9.0 + 4 X 18.4 = 118.6 kips. 
This is an irregular group. To locate the center of 

pure rotation 0 use XB cos 0 = 0. For bolts above 0, 

cos 6 = + 1 5 and for those below, cos 6 = — 1. Therefore 
0 must be located so as to have equal bolt capacities 
above and below it. Locate 0 as shown (adding part of 
the 18.4 kips of the bolt at 0 to the upper bolts and the 
rest to the lower bolts). 

M0 = 5 X 9.0 X ( 3 % + 6) + 
3 X 18.4 X iy2 = 853 kip-in. 

kD = 853/118.6 = 7.2 in.; E = 9 in. 

Though the curves in Fig. 2 have been prepared for a 
regular pattern, their use will give sufficient practical 
accuracy for cases like this example. Joining the origin 
to the p o i n t / = 7.2, m = 9, the intersection with the 
curve for an infinite number of bolts gives / = 0.66. 
F = 0.66 X 118.6 = 77 kips. 

This answer may be checked by trial and error, using 
Equations (4). Putting the center of rotation C approxi
mately 5 ^ in. to the left of 0 and ^ in. above it, it is 
found that H is small (it should be zero), the ratio M/ V 
is approximately the required 9 in., and V = F = 78 
kips, close enough to the 77 kips obtained much faster 
by using the interaction curve of Fig. 2. 

Example 4 (Fig. 15) 
Given: A bracket is connected along the perimeter of 

a rectangle with sides a = 33̂ 2 m - and / = 12 in. by 
means of a continuous weld of value 3.5 kips per inch. 
The load acting on the bracket is so eccentric that it may 
be approximated by a pure moment. Assuming that 
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plastic concepts are applicable, find the moment capacity 
of the weld. 

Solution: Let the width of the weld be s. Then the 
weld may be treated as the difference between two con
centric rectangles, aJi and ash- Referring to Fig. 9, 
let M0 = kDF0 for each of these two rectangles, where 
k is one-half of the coefficients MJabc tabulated in the 
same figure. By performing the required algebraic 
manipulation and going to the limit s —*• 0, it is easily 
derived that, for the weld, M0 = k{\ + sin fi cos f3)DFo. 

Mo = 0 . 2 5 9 ( 1 + 0 . 9 6 X 0 . 2 8 ) X 1 2 ^ X (31 X 3.5) 

= 0.329 X 1 2 ^ X 108.5 kips 

= 446 kip-in. 

For comparison, the elastic moment capacity = 
( 1 + 2 sin j8 cos t3)DF0 = 347 kip-in. (The elastic 
capacity may be checked by extrapolating from the 
table in the AISG Manual , Page 4-62). 

Another way of dealing with continuous welds de
posited in straight line segments such as those tabulated 
in the AISC Manual is by means of Equations (7), (8) 
and (9), or by means of charts based thereon. 
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