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ABSTRACT

This paper presents closed-form equations that were developed to evaluate critical temperatures of structural steel compression and ten-
sion members exposed to fire. The deterministic approach involved a parametric study using finite element simulations in order to iden-
tify influencing factors—for example, mechanical properties of steel, member slenderness, and axial load ratios. Statistical models were 
employed to develop closed-form equations representing the best fit of numerical results. A comparison with experimental column test data 
indicates that the proposed equation for compression members provides a conservative lower bound (16% lower on average) relative to the 
test data at load ratios greater than 0.3. A sensitivity study was also performed to further explore uncertainty in predicted critical tempera-
tures due to variability of axial load ratios. For both compression and tension members, the ambient-temperature yield stress of steel, Fy, 
has a great impact on determination of axial load ratios, subsequently influencing the overall accuracy of the critical temperature estimated 
by the proposed equations. The applicability of the proposed equations is limited to wide-flange steel members that are simply supported, 
concentrically loaded, and exposed to uniform heating.
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INTRODUCTION

Background

In the United States, fire resistance design of load-carrying  
steel members (beams and columns) in steel-framed 

buildings is mainly achieved through compliance with 
prescriptive provisions in the International Building Code 
(ICC, 2009). In this approach, fireproofing insulation is 
applied to exposed steel so that the steel does not exceed 
the critical temperature under standard fire conditions for 
a minimum specified duration (known as a fire-resistant 
rating). According to the American Society for Testing 
and Materials (ASTM) E119 standard (ASTM, 2019), the 
critical temperature of exposed steel members in a stan-
dard fire test is 1000°F (538°C) for columns and 1100°F 
(593°C) for beams, determined as the average temperature 
of all measurement points. However, these limiting tem-
peratures seldom account for the effects of imposed load 

levels, semi-rigid support conditions, and both member and 
section slenderness.

Prescriptive methods have provided little information 
regarding the high-temperature strength and associated 
failure modes of steel members exposed to fire. As an alter-
native engineering approach, AISC Specification Appen-
dix  4 (AISC, 2016b) provides high-temperature member 
strength equations for the limit states of flexural buck-
ling and lateral-torsional buckling. To calculate member 
strengths at elevated temperature, users need to define the 
temperature of interest as an input, which must be greater 
than 392°F (200°C), based on heat transfer analyses or 
engineering judgments. These equations are less practical 
for solving the critical temperature at which the member 
demand exceeds its capacity because iteration with increas-
ing temperatures is required (Sauca et al., 2019).

In Europe, the evaluation of critical temperatures of axi-
ally loaded steel members was of interest beginning in the 
late 1970s. Kruppa (1979) defined “critical” or “collapse” 
temperature as the temperature at which the structure 
cannot assume its function and proposed a critical tem-
perature equation for steel columns using the temperature-
dependent axial stress and buckling coefficient. Rubert and 
Schaumann (1988) used finite element models for calculat-
ing critical temperature of steel columns. The analytical 
results were compared with 50 full-scale column tests and 
showed good correlation at temperatures in the range of 
390°F (200°C) to 1300°F (700°C) and utilization (demand-
to-capacity) ratios of 0.2 to 0.6.

Neves (1995) further explored the critical temperature 
of restrained steel columns analytically, with three column 
slenderness values (40, 80, and 120) and eccentricity of the 
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applied load. Due to the variety of parameters being con-
sidered, a critical temperature equation was not proposed. 
Similarly, Franssen (2000) applied an arc-length numerical 
technique to calculate the collapse temperature of columns. 
Wang et al. (2010) evaluated the critical temperature of 
restrained steel columns using a finite element ABAQUS 
model (Smith, 2009) with two-dimensional beam elements. 
Their study indicated that the section geometry had very 
limited effects on the column critical temperature, and the 
critical temperature of a restrained column can be obtained 
by making a reduction in corresponding values of columns 
without axial restraint.

The European standards provide critical temperature 
equations or tabulated data for steel members. For steel 
members “without instability phenomena” (e.g., tension or 
flexural yielding), the critical temperature is only a function 
of a utilization ratio for fire conditions (CEN, 2005). This 
equation is very similar to an inverse of the temperature- 
dependent yield strength of structural steel. For steel col-
umns, however, only tabulated forms (e.g., Vassart et al., 
2014; BSI, 2005) are available to evaluate critical tempera-
tures, depending upon the member slenderness and utiliza-
tion ratio. Despite all the limitations (i.e., applicability only 
under standard fires, uniform distribution of temperatures 
across the section and length, and simplified boundary con-
ditions), the critical temperature method would remain as a 
useful tool to evaluate the fire resistance of load-carrying 
steel members (Milke, 2016).

Objectives, Scope, and Limitations

The significance of the critical temperature method lies in 
its simplicity and the useful information obtained about a 
structural member exposed to varying temperatures dur-
ing a fire event. To date, however, a critical temperature 
method is not available in AISC Specification Appendix 4 
(AISC, 2016b). The objective of the study presented herein 
was to develop closed-form solutions that can be used to 
evaluate critical temperatures of axially loaded steel mem-
bers exposed to fire. The methodology adopted in this study 
included (1)  a parametric study using 900 finite element 
models to identify the influencing variables for determina-
tion of critical temperatures of steel members at elevated 
temperatures, (2) three-dimensional regression analyses to 
develop a closed-form equation that represents the best fit 
of numerical results with given ranges of the parameters 
considered in this study, (3) comparison of the critical tem-
perature predicted using the proposed equation with test 
data in literature, and (4)  a sensitivity study to estimate 
uncertainty in critical temperatures computed using pro-
posed equations.

The scope of this study focused on the critical tempera-
ture of structural steel tension and compression members 
with wide-flange rolled shapes. The parameters influencing 

critical temperatures were evaluated, including various 
axial load levels, steel grades, and section compactness 
and member slenderness at ambient temperature. The use 
of proposed equations presented herein should be limited 
to wide-flange steel members simply supported, concen-
trically loaded, and exposed to uniform heating. Future 
work will include the effects of thermal restraints as well 
as thermal gradients through the section depth and along 
the member length.

NUMERICAL ANALYSES

Test Bed

The critical temperature of axially loaded steel columns 
with wide-flange rolled shapes was evaluated using the 
finite element method (FEM). In this study, a total of 900 
FEM models were analyzed in combination with various 
ranges of parameters summarized in Table 1. Five differ-
ent wide-flange rolled shapes, including W8×31, W10×68, 
W14×22, W14×90, and W14×211, were used in this study. 
With the exception of the W14×22, all other shapes are com-
pact for compression at ambient temperature. In addition, 
two American standard grades of structural steel shapes, 
including Fy  =  50  ksi and Fy  =  36  ksi, are considered, where  
Fy is the minimum specified yield stress. Effective slen-
derness ratios, Lc/r, range from 20 to 200, and applied 
load ratios vary from 0.1 to 0.9. The load ratio is defined 
as the axial demand at elevated temperatures, Pu, normal-
ized by the nominal capacity at ambient temperature, Pna. 
The demand for fire condition can be determined from the 
load combination for extraordinary events, 1.2 × dead load 
+ 0.5 × live load + AT, where AT is the force and defor-
mation induced by fire effects (ASCE, 2016). In this study, 
all investigated members were assumed to be simply sup-
ported, concentrically loaded, and exposed to uniform heat-
ing; therefore, the magnitude of AT was assumed to be zero. 
The nominal capacity at ambient temperature, Pna, can be 
calculated using AISC Specification Section E3.

Numerical models of columns were developed using 
three-dimensional shell elements. Each model was dis-
cretized into 50 elements along the member length and 8 
elements each for the flange and the web. The FEM solution 
with this element size was converged with the maximum 
error of about 2%, based on the mesh density study presented 
in Sauca et al. (2019). Linear kinematic constraints were 
applied to both the flanges and web at each end in order to 
enforce rigid planar behavior. The column ends were sim-
ply supported. An axial force was applied to the centroid 
of the end section. An initial displacement at midspan was 
taken as the 1/1000 of the column length to simulate global 
imperfections (initial sweep). Local geometrical imperfec-
tions were implemented by scaling a sinusoidal deformation 
of the cross sections using elastic buckling analyses. The 
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• Applied load level: The critical temperature is affected 
by the magnitude of applied loads. The reduction in 
critical temperature can reach nearly 80% between the 
load ratio of 0.1 and 0.9 and 20% on average at each 
increment of 0.1. Larger scatter of the results is observed 
for the models with the load ratio between 0.5 and 0.8, as 
shown by the error bars in Figure 1(a), due to variation 
in member slenderness. The critical temperature versus 
applied load relationship shows a very good linear fit, 
similar to an empirical relationship presented in Choe et 
al. (2011).

Figure  2 shows critical temperatures of steel columns 
relative to load ratio with (1)  all five shapes and two dif-
ferent steel grades and (2) W14×22 and W14×90 columns 
with Fy = 50 ksi. Both graphs considered the slenderness 
ratios of 20, 40, and 100. Some discussions on the effect of 
the ambient yield stress, Fy, and the section compactness 
are as follows.

• Ambient yield strength: The variation in critical 
temperatures predicted using two different steel grades 
(36 ksi versus 50 ksi) is about 1% on average. This is to 
be expected as the buckling behavior of columns with the 
slenderness ratio greater than 40 (i.e., medium-length to 
slender columns) is mainly affected by low strain levels 
(less than 0.05% strain) and temperature-dependent 
elastic modulus (Choe et al., 2017).

• Section geometry: Between two different wide-flange 
shapes, the variation in critical temperatures is over 10% 
for short columns subjected to large axial loads (i.e., a 
slenderness ratio less than 60 and a load ratio greater 
than 0.6). The critical temperature variation for slender 
columns subjected to small axial loads is below 5%.

PROPOSED CLOSED-FORM EQUATION

Compression Members

The numerical results from 900 finite-element models were 
used to develop a closed-form equation that predicts criti-
cal temperatures of steel columns as a function of member 
slenderness and load ratio. The three-dimensional linear 
polynomial model, as shown in Figure  3, was employed 

scaled value was taken as the larger of a web out-of-flatness 
equal to the ratio of the section depth over 150 (Kim and 
Lee, 2002) or a tilt in the compression flanges taken as the 
ratio of the flange width over 150 (Zhang et al., 2015). No 
residual stresses were applied because their influence is 
limited at elevated temperature (Vila Real et al., 2007). The 
Eurocode 3 (CEN, 2005) temperature-dependent stress-
strain relationship was employed, whereas no thermal creep 
model was incorporated explicitly.

In order to estimate critical temperatures of columns 
using FEM models, an axial load as a fraction of Pna was 
applied at ambient temperature, and then the member tem-
perature was increased monotonically until force equi-
libriums could not be achieved. The maximum value of 
temperature achieved from each FEM model was defined 
as a critical temperature.

Numerical Results

Figure  1 shows the critical temperature, Tcr, of steel col-
umns predicted using the finite element models with Fy = 
50 ksi (350 MPa), where the dotted lines indicate the lin-
ear regression of these predicted results. Figure 1(a) shows 
the average critical temperature of columns as a function 
of a load ratio. The error bars indicate the standard devia-
tion of the results varying with five different shapes and all 
slenderness ratios (Lc/r = 20 to 200) at the same load level. 
Figure  1(b) shows the relationship of the average critical 
temperature of all five columns versus the slenderness ratio 
at four different load ratios (Pu/Pna) of 0.1, 0.3, 0.6, and 0.9. 
As shown, the critical temperature appears to be linearly 
decreasing with both increasing load ratios and increasing 
slenderness ratios. However, the critical temperature is less 
sensitive to the member slenderness at the same load level. 
Some statistical results and discussions on the effect of 
member slenderness and applied load levels are as follows.

• Member slenderness: The reduction in critical 
temperatures with increasing slenderness ratios is 
influenced by the applied load level. At load ratios 
smaller than 0.5, the critical temperature is reduced 
by about 10% between the slenderness ratio of 20 and 
200. At higher load ratios, the critical temperature can 
reduce by 30% to 60% for the Lc/r ratio of 20 to 200. This 
reduction is not proportional to load ratios.

Table 1. Test Parameters Used in Numerical Analyses

Shape Fy Lc//r Pu//Pna

W8×31
W10×68
W14×22
W14×90
W14×211

36 ksi (250 MPa)
50 ksi (350 MPa)

20 to 200
(increment: 20)

0.1 to 0.9
(increment: 0.1)
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Tcr = −−1580 0.814
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(2)

Figure 4 shows a comparison of critical temperatures cal-
culated using the proposed equation with those estimated 
using various methods, including FEM models, the ASTM 
E119 limiting temperature of columns, and the AISC Speci-
fication Appendix 4 equation. In Figure 4(a), the results of 

based on the results from the parametric study presented 
previously. Equations 1 and 2 show the resulting best linear 
fit equation in °C and °F, respectively, with the R-square 
value of 0.97.
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Tcr (°F) = -1303.7(Pu/Pna) + 1488.7
R2 = 0.9925
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Fig. 1. Average critical temperatures for columns predicted using FEM models of five shapes  
with Fy = 50 ksi as a function of (a) load ratio (Pu/Pna) and (b) member slenderness (Lc/ry).
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Fig. 2. Predicted critical temperatures of columns with slenderness ratios of 20, 40, and 100.
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Fig. 3. A three-dimensional linear curve fit of 900 FEM models of columns.
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Fig. 4. Comparisons of the proposed column equation.
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FEM models are presented with two lines: the upper bound 
as mean values plus standard deviations (std) and the lower 
bound as mean values minus standard deviations. The stan-
dard deviation incorporates the total variation in the FEM 
data resulting from the range in parameters described in 
Table 1 at each load level. The error bars plotted with the 
critical temperature predicted using Equation 1 indicate the 
standard deviation due to slenderness ratio ranges from 20 
to 200. Overall, the proposed equation compares reason-
ably well with the FEM results. With this equation, the 
load-bearing capacity of steel columns is approximately 
40% of the ambient capacity at the ASTM E119 limiting 
temperature of 1000°F (540°C).

Figure 4(b) gives a comparison with critical temperatures 
estimated using the AISC Specification Appendix 4 flex-
ural buckling strength equation, Equation A-4-2. A detailed 
description of computation methods, which required an iter-
ation process, is presented in Sauca et al. (2019). The error 
bars in this figure indicate the standard deviation resulted 
from a variety of steel shapes and slenderness ratios con-
sidered in this study. For columns with load ratios less than 
0.6, the proposed equation also adequately predicts critical 
temperatures, with 2% difference on average. At load ratios 
equal to or greater than 0.6, however, the proposed equa-
tion may overestimate critical temperatures estimated using 
AISC Specification Equation A-4-2.

The efficacy of Equation  1 was examined by compar-
ing predicted critical temperatures with observed critical 
temperatures from previous experimental studies (Franssen 
et al., 1996; Ali et al., 1998; Choe et al., 2011) of steel col-
umns that had similar properties used for the present study. 
Test data used for this comparison included 36 wide-flange, 
hot-rolled column specimens that had simply supported 

boundary conditions and were concentrically loaded (i.e., 
an eccentricity of axial loading was less than the 1/1000 
of the column length) at elevated temperatures. In this data 
set, the ambient-temperature yield stress ranged from 32 ksi 
(220 MPa) to 60 ksi (400 MPa), and effective slenderness 
ratios varied from 30 to 137.

Figure 5 shows a comparison of the column test data with 
predicted critical temperatures using Equation 1 and with 
the linear regression of the data itself. Overall, the proposed 
equation provides a conservative lower bound of the test 
results. For the specimens with load ratios greater than 0.3, 
the calculated critical temperatures are approximately 16% 
lower than the measured values on average. For load ratios 
less than 0.2, Equation 1 slightly overestimates the critical 
temperature by 4%.

Tension Members

Critical temperatures of uniformly heated steel members in 
tension have a dependency of high-temperature mechanical 
properties, such as temperature-dependent yield stress and 
ultimate tensile strength. This paper also suggests a critical 
temperature equation for tensile yielding in gross sections of 
a steel member as a function of imposed tension loads, Tu, at 
elevated temperature normalized by the nominal capacity, 
Tna, at ambient temperature. As shown in Figure 6, the criti-
cal temperature equation is an inverse relationship of the 
AISC Specification temperature-dependent retention fac-
tors for yield stress, ky, essentially the same as the Eurocode 
3 (CEN, 2005) retention factors. The logarithmic regres-
sion model was employed similar to the Eurocode 3 criti-
cal temperature equation for members “without instability 
phenomena.” Equations 3 and 4 show the best fit equation 
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Fig. 5. A comparison of critical temperatures of columns calculated using Equation 1 with experimental test data.
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Although uncertainty in geometric properties are present 
in the proposed equation, such as column length, Lc, and 
the radius of gyration, r, this effect was neglected with the 
assumption that compliance of standard fabrication toler-
ances specified in the AISC Code of Standard Practice 
for Steel Buildings and Bridges (AISC, 2016a) would not 
result in notable critical temperature changes. A compari-
son of the influence of each parameter (Fy, E, DL, and LL) 
on the variation in the critical temperature was calculated 
by considering reasonable upper and lower bounds of each 
variable. Each parameter was evaluated at the mean ±1 
standard deviation (std) that represents 68% confidence 
intervals. The mean ±2 standard deviations (to represent a 
95% confidence interval) were also reported. A normal dis-
tribution of each variable was assumed.

Statistical properties of the investigated variables are 
summarized in Table  2, based on work from Takagi and 
Deierlein (2007), who proposed the member strength equa-
tion for gravity columns at elevated temperature in AISC 
Specification Appendix  4. The mean values and coeffi-
cients of variation (CV) were determined from statistical 
data obtained by Ellingwood et al. (1980). The percentages 

in °C and °F, respectively, with the R-square value of 0.99. 
For the use of these equations, the load ratio, Tu/Tna, must 
be greater than or equal to 0.01.
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ESTIMATED UNCERTAINTY OF  
CLOSED-FORM EQUATIONS

Compression Members

Because the proposed closed-form solution was developed 
using a deterministic approach, which does not account for 
uncertainty in estimation of applied load ratios, Pu/Pna, sen-
sitivity was examined with variability in mechanical prop-
erties of steel (Fy and elastic modulus, E) and the magnitude 
of design loads (e.g., dead load, DL, and live load, LL).  
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Fig. 6. Critical temperature versus load ratio relationship of tension members.

Table 2. Statistical Data for Uncertainties (Takagi and Deierlein, 2007)

Variable Mean CV Std

Fy 50 ksi (350 MPa) 0.10 5 ksi (35 MPa)

E 29,000 ksi (200 GPa) 0.06 1,740 ksi (12 GPa)

DL 103% unfactored 0.10 a

LL 25% unfactored 0.60 b

a: The standard deviation for DL is taken as the mean load × 1.025 × 0.10.
b: The standard deviation for LL is taken as the mean load × 0.25 × 0.60.
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for DL and LL were obtained from load surveys using prob-
abilistic load models. They represent the mean values of the 
unfactored design loads for dead and live loads relative to 
the nominal design loads in the American National Stan-
dard A58. The standard deviation (std) for each variable 
was calculated as the mean times the coefficient of varia-
tion (CV), as shown in Table 2. Ambient temperature values 
of Fy and E were used to calculate the mean and CV values 
due to a lack of statistical data on their high-temperature 
values.

A range of columns used in this study (W8×31, W14×90, 
and W14×211 with Fy = 50 ksi) were examined for sensitiv-
ity. The change in critical temperature due to uncertainty 
of 1 standard deviation is consistent across all compact 
column shapes, so the results presented represent all of the 
compact shapes listed above. Figure 7 shows the change in 
critical temperature for the W14×211 column with Lc/r = 40  
and Lc/r  = 80 due to uncertainty in Fy. The solid line 

represents the critical temperatures determined using the 
proposed closed-form equation [Equation (1)]. The dashed 
lines represent the critical temperatures calculated with Fy 
adjusted by a positive and negative standard deviation. The 
uncertainty in the critical temperature estimated using the 
propose equation is more pronounced at lower Lc/r ratios 
and at higher load ratios where Euler buckling does not 
likely occur. At higher Lc/r levels, where elastic buckling 
of the column would dominate, the impact of a change in 
Fy, appears to be minimal and becomes negligible for Lc/r 
ratios of 120 and greater. At a load ratio (Pu/Pna) of 0.6, the 
uncertainty in estimated critical temperatures is about 20% 
at Lc/r = 40 and about 10% at Lc/r = 80 due to ±1 std of Fy. 
These percentages represent the ratio of change in critical 
temperature due to uncertainty relative to the closed-form 
proposed equation without uncertainty.

Figure 8 shows the variation in estimated critical temper-
ature for the W14×211 column with Lc/r = 40 and Lc/r = 120  
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Fig. 7. Sensitivity of calculated critical temperatures of a W14×211 column due to uncertainty in Fy.
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Fig. 8. Sensitivity of calculated critical temperatures of a W14×211 column due to uncertainty in E.
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due to uncertainty in the elastic modulus, E, in the calcula-
tion of Pna. The uncertainty in estimated critical temper-
ature is most pronounced at both higher slenderness and 
higher load ratios where elastic buckling likely governs. In 
this study, the maximum uncertainty is observed for slen-
der columns (Lc/r ≥ 120) and the applied load ratio of 0.8. 
For these columns, the uncertainty in critical temperatures 
can be as large as 30%. However, for stockier columns  
(Lc/r ≤ 40), this uncertainty in critical temperatures associ-
ated with ±1 std of E becomes very minor, less than 3%.

Sensitivity due to uncertainty in applied loads under fire 
conditions (Pu) was determined by considering three differ-
ent DL/LL ratios selected based on engineering judgment. 
The first DL/LL ratio was 0.65, which was determined by 
assuming a dead load of 65 psf and a live load of 100 psf. 
The second DL/LL ratio of 1.3 was calculated using the 
same dead load of 65 psf but a live load of only 50 psf. The 
65-psf dead load was selected based on the assumption of 

50 psf for the composite slab plus 15 psf for superimposed 
dead loads such as ceilings and ductwork and piping for 
utilities. The live load values of 50 psf and 100 psf repre-
sent average and high levels of live loading, respectively. 
According to ASCE/SEI  7 (2016), 50  psf represents live 
loads for office spaces, while 100  psf represents lobbies 
and other assembly areas. The final DL/LL ratio that was 
used was 0.33. This ratio is given in the AISC Specification  
Section A1 Commentary (AISC, 2016b) as the ratio that 
results in the same reliability between the ASD and LRFD 
design methods. Using these ratios, the dead and live loads 
on the column were determined by assuming that the 
demand-to-capacity ratio for each column at ambient con-
ditions is equal to 1.0 for the ambient load combination, 
1.2DL + 1.6LL. Converting to the fire load combination 
(1.2DL + 0.5LL), this equates to a Pu/Pna ratio of approxi-
mately 0.4, 0.5, and 0.6 for DL/LL ratios of 0.33, 0.65, and 
1.3, respectively. Figure  9(a) shows the change in critical 

(a) Dead load (DL)

(b) Live load (LL)

Fig. 9. Sensitivity of the change in critical temperature due to uncertainty. Note: ΔTcr is presented (not Tcr); ΔTcr(°F) = 9/5[ΔTcr (°C)].
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temperature due to uncertainty in dead load, while Fig-
ure 9(b) represents the change in critical temperature due 
to live load uncertainty. These results show that critical 
temperatures are more influenced by a higher DL/LL ratio 
for dead load variability and a lower DL/LL for live load 
variability. These critical temperature changes (ΔTcr) are 
independent of the Lc/r ratio of the column. The maximum 
change in critical temperature due to uncertainty of 1 stan-
dard deviation in DL and LL is 59°F and 44°F, respectively.

Tension Members

The same variables (Fy, DL, and LL) were studied for ten-
sion members to determine the sensitivity of the closed-
form equation. There is no sensitivity in the equation to a 
change in modulus of elasticity (E). A W14×22 shape was 
chosen to demonstrate the sensitivity. Figure 10 summarizes 
the sensitivity by showing the change in critical temperate 
for ±1 std and ±2 std of each parameter, estimated using CV 
values in Table 2. The same DL/LL ratios of 0.33, 0.65, and 
1.3 were also used. This comparison shows that the great-
est change in critical temperatures is due to a change in 
the yield stress of the material. At 1 standard deviation, the 
change in temperature is −32°F to 29°F, and at 2 standard 
deviations, it is −68°F to 56°F. The variation in DL with a 
high DL/LL ratio produces the second highest sensitivity.

SUMMARY AND CONCLUSIONS

This paper presents the development of closed-form solu-
tions to evaluate critical temperatures of axially loaded 
steel members exposed to fire. For compression members, 

a total of 900 FEM models were analyzed in combination 
with various ranges of parameters, including five different 
wide-flange rolled shapes made of two American standard 
grades of structural steel, member slenderness ratios from 
20 to 200, and applied load ratios varying from 0.1 to 0.9. 
Load ratios represent the axial demand at elevated tempera-
tures, Pu, normalized by the nominal capacity at ambient 
temperature, Pna.

The parametric study indicates that the most influential 
parameters for critical temperature of columns are member 
slenderness and applied load ratios. A closed-form equa-
tion predicting critical temperatures of steel columns with 
these two factors is proposed based on curve-fitting of the 
FEM results using the three-dimensional linear polyno-
mial model. With this equation, the load-bearing capac-
ity of steel columns is approximately 40% of the ambient 
capacity at the ASTM E119 limiting temperature of 1000°F 
(540°C). At load ratios less than 0.6, the proposed equation 
accurately predicts critical temperatures determined using 
the high-temperature flexural buckling strength equation 
in AISC Specification Appendix 4, whereas it may overes-
timate critical temperatures (10% difference or greater) at 
load ratio greater than or equal to 0.6. The proposed equa-
tion also provides a conservative lower bound (16% lower 
on average) of the published test data for the specimens 
with load ratios greater than 0.3. This result considers col-
umn failure by flexural buckling at elevated temperature.

A critical temperature equation for tension members is 
also proposed using the logarithmic regression model for 
the case with tensile yielding only. This equation is essen-
tially the same as an inverse relationship of the AISC 

Fig. 10. Sensitivity of the change in critical temperature of tension members due to  
uncertainty in parameters. Note: ΔTcr is presented (not Tcr); ΔTcr(°F) = 9/5[ΔTcr (°C)].
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Specification temperature-dependent retention factors for 
yield stress.

A sensitivity study was performed to estimate the uncer-
tainty in critical temperatures predicted using the proposed 
equations due to the variability in axial load ratios. The 
results show that these critical temperatures depend on the 
ambient temperature Fy and E as well as design loads (DL 
and LL). The variation in Fy is the most influential factor 
among other uncertain variables for critical temperatures 
of both compression and tension members. The influence 
of Fy uncertainty is apparent in stout columns with a low 
slenderness ratio. All results show that variations in critical 
temperature are relatively minor for uncertainty of 1 stan-
dard deviation, particularly for typical columns, which are 
assumed to have load ratios of approximately 0.6 and Lc/r 
ratios of approximately 40 to 60. Consideration of material 
sensitivity should be implemented for load ratios beyond 
0.6.

The findings and equations from this study are limited 
to the range of parameters included in the numerical evalu-
ation. Future studies will be conducted to further incorpo-
rate probabilistic analyses into the current deterministic 
approach, accounting for the effects of thermal restraints 
as well as thermal gradients through the section depth and 
along the member length.
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