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ABSTRACT

Large local member shear forces develop in beams in chevron-braced frames due to the delivery of brace forces to beam flanges, which 
are at a distance from the beam centerline (Fortney and Thornton, 2015, 2017; Hadad and Fortney, 2020). Using the “lower bound theorem” 
(Thornton, 1984), Sabelli and Arber (2017) developed design methods to address this local member shear by optimizing the internal stress 
distribution and thus maximizing the resistance utilized in design. This paper further develops those design methods for chevron beams and 
extends them to gusset connections at columns.
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INTRODUCTION

The “chevron effect” is a term used to describe local 
beam forces in the gusset region of a chevron (also 

termed inverted-V) braced frame. These local forces are 
not captured by beam analysis methods that neglect con-
nection dimensions. Fortney and Thornton (2015, 2017) and 
Hadad and Fortney (2020) have shown methods of analy-
sis for these forces. This study adds design solutions for 
addressing high member shear in the connection region, 

including reinforcement and proportioning for (chevron) 
gussets within the beam span and for full-height gussets at 
beam-column-brace connections.

V-braced frames (and their variants) are commonly used 
in steel structures and are commonly termed “chevron-
braced frames.” Figure 1 shows three chevron configura-
tions: the inverted-V-braced frame (a), in which two braces 
connect to the bottom of the beam at its midpoint; the 
V-braced frame (b), in which two braces connect to the top 
of the beam at its midpoint; and the two-story, X-braced 
frame (c), in which four braces connect to the beam at its 
midpoint, two from above and two from below.

The beams and columns of these frames are typically 
designed using centerline models, and equilibrium is 
addressed in the design at the “workpoint” (the intersection 
of member centerlines). In typical design, a substantial gus-
set plate is provided at brace connections, and force trans-
fer is accomplished over the length of that plate. Figure 2 
shows a frame with such gusset plates. Similar connections 

	 (a)  Inverted-V-braced frame	 (b)  V-braced frame	 (c)  Two-story, X-braced frame

Fig. 1.  Chevron-braced frame configurations.
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are used in truss construction with web-vertical wide-flange 
chords (Figure 3).

Work by Fortney and Thornton (2015, 2017) and Hadad 
and Fortney (2020) highlights the importance of analysis of 
chevron braced-frame connections. In particular, Fortney 
and Thornton derive expressions for the local beam shear 
and moment that result from the distribution of brace forces 
over the gusset-plate length. These beam forces (in particu-
lar, the shear) can result in the need to supplement the beam 
web with a doubler plate. An example of such a condition is 
shown in the second edition AISC Seismic Design Manual 
(AISC, 2012). In the third edition Seismic Design Manual 
(AISC, 2018), the example connection utilizes some of the 
relationships developed by Sabelli and Arber (2017) to 
eliminate the need for reinforcement.

This study builds on the work of Sabelli and Arber, apply-
ing the same concepts developed by Fortney and Thornton, 
with the aim of providing methods for the design of con-
nections that do not require reinforcement. The methods 
presented in this paper rely heavily on the “lower bound 
theorem” as presented by Thornton (1984) for similar con-
nections, demonstrating adequate strength through inves-
tigation of an advantageous internal stress distribution in 
a ductile connection and examining forces at gusset edges 
and at critical sections.

This study also extends and generalizes the equations 
developed for chevron connections for use in other condi-
tions, such as columns with full-height gussets (also called 
“mega-gussets”) in which the gusset extends through the 
beam depth and the beam connects to the gusset rather than 
to the column (see Figure 4). In addition to transferring brace 
forces, full-height gusset connections transfer beam forces 
to the column. Such connections may be accomplished with 
welded beam flanges (as shown in Figure 4), which provide 
flexural continuity (and thus additional flexural forces to be 

transferred by the gusset to the column), or with a connec-
tion similar to a single-plate connection (also known as a 
“shear tab”), which minimizes these flexural forces. Adap-
tation of these methods to beam-column-brace connections 
with traditional gussets (Figure 5) is beyond the scope of 
this paper.

The first part of the paper derives the design equa-
tions employing statics and two models of stress distribu-
tion along the gusset-flange interface: the Uniform Stress 
Method, based on Fortney and Thornton (2015), and the 
Concentrated Stress Method, based on Sabelli and Arber 
(2017). The former model is simpler, but if that model indi-
cates that reinforcement is required, significant economy 
can be realized by using the latter. The second portion of 
the paper is a brief design example that addresses both 
methods for the design of a chevron connection.

This study addresses both member shear and member 
moment caused by the local connection forces as these dif-
fer from the shears and moments from a simple, centerline 
model of members. In the authors’ experience, the local 
member shear often controls the connection design (such 
as by necessitating a minimum gusset length), but the addi-
tional member moment caused by the local connection 
forces does not.

The design equations derived here are based on the static 
equilibrium of the gusset plate based on the brace axial 
forces (and beam reactions for the column connection). As 
such, they are equally applicable to frames designed as part 
of a ductile seismic system (in which brace forces typically 
correspond to the brace capacity), and those designed for 
wind or other cases that do not involve capacity design. 
Additional considerations for seismic design, such as deter-
mination of the appropriate brace force level for which 
beam yielding should be precluded, are beyond the scope 
of this paper.

Fig. 2.  Typical braced frames with gussets. Fig. 3.  Truss with gussets. 
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Fig. 4.  Full-height gusset brace connection at column.

Fig. 5.  Traditional gusset at column.
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Mmax	 Maximum member moment (within connection 
region) due to brace forces, kip-in. (N-mm)

MTot	 Total moment acting on beam due to Mf1 and Mf2, 
kip-in. (N-mm)

NBm	 Beam axial force transferred to gusset at column 
connection, kips (N)

Ng	 Normal force on a gusset section transverse to the 
member axis, kips (N)

Pn	 Nominal member or element axial strength, kips (N)

Ru	 Required strength, kips (N)

Rz	 Normal force from moment transfer for 
Concentrated Stress Method, kips (N)

VBm	 Beam connection shear transferred to gusset at 
column connection, kips (N)

VCh	 Chevron shear, equal to the sum of member shear 
and gusset shear transverse to member axis, kips (N)

Vef	 Effective member shear strength (deducting demands 
other than brace connection forces), kips (N)

VefTot	 Effective member shear strength considering the 
effects of unbalanced forces from gussets on both 
sides of the member, kips (N)

Vg	 Shear on a gusset section transverse to the member 
axis, kips (N)

VM	 Member shear due to loading other than from braces, 
kips (N)

Vma	 Member shear (outside connection region), kips (N)

Vmc	 Member shear (within connection region), kips (N)

Vn	 Nominal member or element shear strength, kips (N)

W	 Width of brace-to-gusset connection used to locate 
critical diagonal section, in. (mm)

Xcrit	 Dimension parallel to the member axis used to locate 
critical diagonal section, in. (mm)

Yclip	 Dimension transverse to member axis of gusset 
corner clip, in. (mm)

dm	 Member depth, in. (mm)

dg	 Gusset dimension transverse to member axis, in. 
(mm)

ecrit	 Location of force FYcrit with respect to intersection of 
critical diagonal section and gusset edge, in. (mm)

eg	 Eccentricity parallel to member axis of gusset 
midpoint from workpoint (e.g., beam centerline at 
column connection), in. (mm)

SYMBOLS, NOMENCLATURE,  
AND CONVENTIONS

This study employs the following symbols and terms:

Dclip	 Diagonal dimension of reduced critical-diagonal-
section length due to Yclip, in. (mm)

Dcrit	 Length of critical diagonal section of gusset, in. 
(mm)

Fi,j	 Brace axial force for brace “j” connecting to gusset 
“i,” kips (N) (sign conventions are per the figures)

FN	 Gusset concentrated force at member flange, 
transverse to member axis, kips (N) (compression is 
positive)

FV	 Gusset shear component parallel to member axis at 
interface with flange, kips (N)

FXcrit	 Force parallel to the member axis acting on critical 
diagonal section of gusset, kips (N)

FYcrit	 Force transverse to member axis acting on critical 
diagonal section of gusset, kips (N)

Fy	 Specified minimum yield stress, ksi (MPa)

Lbeam	 Beam length (column centerline to centerline), in. 
(mm)

Lg	 Gusset length, in. (mm)

Lw	 Length of weld, in. (mm)

MBm	 Beam moment transferred to gusset at column 
connection, kip-in. (N-mm)

MCh	 Chevron moment at face of member due to force FV 
(equal and opposite to the distributed moment MFV 
for concentric workpoints), kip-in. (N-mm)

Mcrit	 Moment acting on critical diagonal section of gusset, 
kip-in. (N-mm)

Mf	 Moment at gusset-to-flange-interface due to brace 
forces, kip-in. (N-mm)

MFV	 Moment in the connection due to force FV, 
distributed along gusset length and eccentric to 
workpoint (equal and opposite to the chevron 
moment, MCh, for concentric workpoints), kip-in. 
(N-mm)

Mg	 Moment on a gusset section transverse to the 
member axis, kip-in. (N-mm)

MM	 Member moment at workpoint due to loading other 
than from braces, kip-in. (N-mm).

Mn	 Nominal member or element flexural strength, kips 
(N)
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the corresponding subscript. The subscript “Tot” refers to 
total forces, combining those from gusset “1” and gusset “2.”

Brace axial forces have two subscripts. The first pertains 
to which gusset the brace connects to (“1” or “2”). The sec-
ond pertains to which of the two braces is indicated. Sign 
conventions match the figures such that positive brace axial 
forces F1,2 and F2,1 correspond to compression and positive 
brace axial force F1,1 and F2,2 correspond to tension. Forces 
and angles pertaining to each brace carry the same designa-
tion subscript.

The design equations are presented in a general form 
such that they can be used for both column and beam gus-
sets. To permit this, certain general terms are used, such as 
“member” in lieu of “beam” or “column.” This approach 
carries through to the symbols.

Brace-force components acting on the gusset–member 
interface are described as (gusset) “shear” or “normal” 
forces. Gusset shear forces, FV, are parallel to the member 
axis (horizontal for the chevron beam and vertical for the 
column); normal forces on the connection, FN, are perpen-
dicular to the member axis (vertical for the chevron beam 
and horizontal for the column).

The term “workpoint” refers to the intersection of brace 
centerlines with each other or with the column centerline. 
This workpoint is typically also at the beam centerline.

Figure 6 shows dimensions noted on beam and gusset-
plate diagrams. Braces may occur above the beam, below 
the beam, or both. The diagram shows a symmetrical con-
dition, but the connection calculations apply for asymmet-
rical cases. (Beam shear and moment require adjustment 
for asymmetrical applications.) Figure 7 shows dimensions 
noted on column and gusset-plate diagrams. Braces may 
occur in various combinations, and the column may con-
tinue up past the connection or may terminate as shown in 
the upper diagram. The diagram shows a full-height gusset: 
a gusset plate that comes between the beam and the column.

em	 Transverse eccentricity from member flange to 
workpoint, typically equal to half the member depth, 
in. (mm)

ez	 Length of moment arm between centroids of z 
regions, in. (mm)

k	 Distance from outer face of flange to web toe of 
fillet, in. (mm)

ru	 Required strength per unit length, kips/in. (N/mm)

tg	 Gusset thickness, in. (mm)

tw	 Member web thickness, in. (mm)

w	 Weld size, in. (mm)

x	 Distance from gusset midpoint along member axis, 
in. (mm)

z	 Length of concentrated stress region at ends of 
gusset, in. (mm)

γ	 Brace angle from member longitudinal axis, deg

ϕb	 Resistance factor for bending (0.9)

ϕc	 Resistance factor for compression (0.9)

ϕn	 Resistance factor for nonductile limit states such as 
web crippling and weld rupture (0.75)

ϕt	 Resistance factor for tension (0.9)

ϕw	 Resistance factor for web local yielding (1.0)

ϕv	 Resistance factor for shear (1.0)

Subscripts are employed in some equations to distin-
guish actions and dimensions related to one gusset or one 
brace from another. Gussets are designated “1” and “2,” and 
dimensions and forces associated with each gusset are given 

Fig. 6.  Chevron gusset geometry.
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STATICS

Although the methods developed in this paper are intended 
to facilitate the design of connections of multiple mem-
bers (such as is shown in Figure 7), in essence the methods 
simply provide designers with the means of designing an 
attachment to a wide-flange member (such as is shown in 
Figure  8) for a set of known, in-plane forces, converting 
these to a normal force transverse to the member axis, FN, 
a shear force parallel to the member axis, FV, and a moment 
in the plane of the web, Mf. The design of this connection 
includes evaluation of local limit states within the member, 
including web local yielding, web crippling, and local shear. 
This local shear (in the gray zone in the center diagram in 
Figure 8) is essentially panel-zone shear, and determination 
of the effective depth of the force couple is central to the 
design methods presented. The right-hand diagram in Fig-
ure 8 illustrates that while the member flange and bracket 
rotate in unison, the panel-zone section of the member web 
can undergo large shear strains while the bracket remains 
elastic, and thus the member can yield in shear even if there 
is a substantial bracket present. The shear strength of the 
member is not increased by the addition of the bracket shear 
strength; a thicker or wider bracket would not preclude 
panel-zone shear yielding. Instead, the shear demand on the 
member panel zone can be reduced by using a bracket that 
extends further along the flange, thus increasing the height 
of the panel zone.

The same reconstitution of forces is applicable to braced-
frame and truss connections, assuming the forces in the 

connecting members are known. The analysis and design of 
braces and truss diagonals is typically based on their ideal-
ization as pin-pin members. In some cases, this idealization 
could be modified to permit reduction of the moment Mf 
(which causes the panel-zone shear in the connection); this 
introduces design moments for both the main member and 
the diagonals, and thus requires an integration of member 
design and connection design.

Figure 9 shows free-body diagrams of the gusset plate at 
the beam midspan; Figure 10 shows the same at the column. 
Both figures convert a known set of in-plane forces acting 
on the gusset plate from connecting members into three 
forces at the midpoint of the gusset-flange interface: normal 
force transverse to the member axis, FN, shear force paral-
lel to the member axis, FV, and moment in the plane of the 
web at the face of the member, Mf. The brace forces used 
for the connection design typically do not include moments, 
although these could be included in determining the gusset 
forces.

LOCAL MEMBER FORCES  
(DERIVATION FOR TWO BRACES)

For simplicity, only two braces are considered in the subse-
quent derivation: those on “side 1” of the connection. A later 
section shows the procedure for the inclusion of the effects 
of an additional gusset on the far side (side 2). These braces 
may be at equal angles (as is typical for the beam case) or at 
unequal angles (as happens frequently for the column case 

Fig. 7.  Column gusset geometry. 
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Fig. 8.  Free-body diagram of bracket.

and, on occasion, in the beam case). The design equations 
are presented in general terms applicable to both the beam 
and the column condition. Minor adjustments to the equa-
tions are required for the column case due to the additional 
forces from the connecting beams; these are noted.

The forces on the gusset-to-flange interface are statically 
determined. For clarity, brace forces are separated into 
normal, FN, and shear, FV, components. For the column 
connection, these forces are combined with forces from 
the beam: VBm, NBm, and MBm, as shown in Figure 10. (For 
the case of a beam chevron connection, these forces are all 
zero.) Assuming two braces with forces F1,1 and F1,2, the 
shear force is:

	 FV1 = γ γF1,1 cos 1,1 + F1,2 cos 1,2 +VBm1� (1)

The normal force is:

	 FN1 = − γγF1,2 sin 1,2 F1,1 sin 1,1 + NBm1� (2)

For the column connection, the collector force NBm1 should 
be determined from an analysis consistent with brace forces 
used in the connection design.

In addition to these normal and shear forces, there is a 
moment (required for static equilibrium). While the moment 
due to the brace forces is zero at the workpoint, at the flange 
the moment is:

	 Mf 1 = −MCh1 MBm1� (3)

The first term in Equation 3, MCh1, is the “chevron moment” 

at the member face. This moment may be conceptualized 
by considering the forces from the two braces as applied 
point loads at the locations where their centerlines inter-
sect the member flange. If the brace forces are decomposed 
into components parallel to and normal to the member axis 
(Figure 11), the chevron moment can be determined from 
the normal force components and their eccentricities along 
the member axis:

	

MCh1 =

γ

γF1,1 sin 1,1( ) em

t

γ

γan 1,1( )

+ F1,2 sin 1,2( ) em

tan 1,2( )
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�

(4)

which reduces to:

	 MCh1 = FV1em� (5)

The chevron moment is opposed by a moment, MFV1, that 
corresponds to the parallel components, FV1, multiplied by 
the eccentricity of the flange from the centerline (2dm):

	
MFV1 = γγF1,1 cos 1,1( ) + F1,2 cos 1,2( ) dm

2
= FV1dm

2
⎡⎣ ⎤⎦

�
(6)

which can be simplified to:

	
MFV1 =

FV1dm

2 �
(7)
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Fig. 9.  Force conventions for chevron connection.

Fig. 10.  Force conventions for column connection.
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This moment does not affect the gusset or the weld but 
is necessary for member equilibrium and affects member 
moment. If the workpoint is at the member centerline (as 
shown in Figure  9), the distance from the flange to the 
workpoint, em, is:

em = dm

2  
for the workpoint at the member centerline

�
(8)

If this is the case, the two brace-shear-component-
induced moments are equal and opposite (MCh1 − MFV1 = 0), 
and there is effectively no moment at the workpoint location 
on the member centerline due to FV1. If the workpoint is off 
the member centerline (as shown in Figure 11), the braces 
induce a moment in the member at the centerline location 
aligned with the workpoint; this moment causes shear and 
bending both within and outside of the connection region. 
Moving the workpoint from the main member centerline 
toward the gusset reduces the chevron moment while intro-
ducing a moment into the main member. In general, such an 
approach can be economical but requires coordination with 
member design and building analysis. Similarly, the con-
nection analysis could assign only a portion of this chev-
ron moment to the main member and apply the remainder 
to the braces. This might reduce the connection demands 
but would introduce additional design moments into both 
the main member and the braces, and this member flexure 
could, in principle, affect the building response to lateral 
loads. The former approach (modifying the work point) can 
be integrated with the methods presented in this paper, but 
the latter approach (assigning counterbalancing moments to 
the main member and the braces) is separate.

For the column connection, the beam moment, MBm1, 
affects the moment at the column flange, Mf1. This moment 
(MBm1) should be consistent with the brace forces, and the 
minus sign reflects the direction of forces in Figure  10. 
Typically, both the beam moment and the brace force are 
due to the lateral drift. In such cases, the signs are consis-
tent with those shown in Figure 10; when the brace is in 
compression, the corresponding beam flange is in tension, 
and vice versa, and thus Mf1 in Equation 3 is the differ-
ence rather than the sum. (The corresponding column shear 

is additive to the brace forces as discussed later.) Because 
the effect of the beam moment MBm1 is to reduce the total 
demand, designers should consider how much of this ben-
eficial effect can be relied on, and a range of this moment 
could be considered.

For the case of an asymmetric column gusset (such as 
with only one brace, as shown in the upper diagram of Fig-
ure 7), the eccentricity between the gusset midpoint and the 
beam centerline contributes to the moment:

Mf 1 = −FV1em MBm1 + FN1eg (9)

A similar adjustment can be made for chevron beams if 
the gusset midlength and the workpoint are not aligned 
vertically.

In addition to the “chevron moment,” there is a “chevron 
shear.” The chevron shear (VCh1) is resisted by the gusset 
and the beam in combination:

VCh1 =Vg1 +Vmc1� (10)

This chevron shear can be determined using static equilib-
rium on either half segment of the gusset:

	
VCh1 = γF1,1 sin 1,1 +

1

2
FN1

�
(11)

	
VCh1 = −γF1,2 sin 1,2

1

2
FN1

�
(12)

Figure 12 shows a free-body diagrams of beam and gus-
set segments at the connection, including a transverse sec-
tion through the beam and gusset showing the sharing of 
the chevron shear (VCh1) between the beam shear (Vmc1) and 
the gusset transverse shear (Vg1). Note that the location of 
the centroid of the transverse forces from the gusset seg-
ment to the beam flange (Vmc1 ± 2FN1) is not specified in 
the free-body diagrams of the gusset segments; that loca-
tion may be selected (within certain constraints) in the con-
nection design by the use of a stress distribution model, 
such as the Elastic Method, the Plastic Method, or the 
Optimized Plastic Method as described in Section 8 of the 
AISC Steel Construction Manual (2017). Once this location 

Fig. 11.  Brace forces at flange.
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is set, the division of VCh1 between Vmc1 and Vg1 is statically 
determined. (Moment at the vertical gusset section is zero, 
regardless of the stress distribution, for symmetrical condi-
tions with equal brace forces, as shown in the subsequent 
section, “Gusset Design: Mid-Length Transverse Section.”)

The same relationship applies to full-height column gus-
sets. As will be shown in the following sections, the sharing 
of this chevron shear between the gusset and the beam or 
column can be controlled by a combination of the gusset 
dimension selected and the force distribution assumed at 
the gusset-to-flange interface. In this way, the design meth-
ods presented can reduce or eliminate any required web 
reinforcement.

UNIFORM STRESS METHOD

The Uniform Stress Method is the simplest model for 
addressing the chevron effect, both for discussion and 
design purposes. While the treatment of this method here 
is general, it does not specifically address conditions such 
as beams with workpoints not at the beam midspan; Fort-
ney and Thornton (2017) provide a more thorough treat-
ment. [The term “Uniform Stress Method” is not employed 
by Fortney and Thornton. Sabelli and Arber use this term; 
Hadad and Fortney refer to it as the “Chevron Effects (CE) 
Method.” The term “Uniform Stress Method” has been 
used in practice and so is used here.]

Fortney and Thornton (2015, 2017) employ the Uniform 
Stress Method for the transfer of forces over the length of 
a chevron gusset. In this method, the moment transfer is 
achieved through two blocks of principal stress in the gus-
set, each with a length equal to half that of the gusset, as 
in the “plastic method stress distribution” described in the 
AISC Steel Construction Manual. Figure  13 shows the 
Uniform Stress Method applied to the column and chevron 
connections.

Member Shear

Stresses at the member-to-gusset interface are assumed to 
be distributed uniformly using the full length for the normal 
and shear forces and a plastic-section-modulus approach for 
the moment (Fortney and Thornton, 2015). Following this 
approach, the member shear within the connection region is 
described by the following equation:

	
V1 x( ) = −

2M f 1

Lg1
+

4M f 1

Lg1
2 x + FN1

Lg1
x +VM

�
(13)

The first two terms are the shear due to the gusset 
moment, which includes the chevron moment, MCh, plus 
any other moment transmitted by the gusset per Equation 3. 
The third term in the equation is the shear from the unbal-
anced normal force, and the value at the gusset end (FN1/2) 
is the shear in the member outside of the gusset region for 
the typical, symmetrical case with VM = 0.

In this equation, x is the distance from the gusset mid-
point, as shown in Figure  13. This differs from Fortney 
and Thornton but is presented in this manner to facilitate 
combination of forces from gussets of different lengths on 
opposite flanges of the main member. The member shear is 
additive for connections with gussets on opposite sides for 
the typical braced-frame case (with forces as shown in Fig-
ures 9 and 10), although the member shear VM should only 
be added once. (Hereafter, it is assumed that the member 
shear VM is zero in the connection region.)

The maximum shear in the connection region occurs at 
the gusset midpoint (x = 0) and is equal to:

	
Vmc1 =

2Mf 1

Lg1 �
(14)

This shear, Vmc1, is not equal to the chevron shear, VCh1, nor 
to a trigonometric component of either of the brace forces 

Fig. 12.  Transverse section of beam and gusset showing chevron shear.
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region should be considered by reducing the available shear 
strength or by engaging the gusset to distribute the load 
over the gusset length along with the normal force, FN1.

The member shear is the result of both the eccentricity 
(typically a function of the member depth) and the gusset 
length. These can be adjusted (within practical bounds) to 
provide a member that does not require web strengthening. 
Following this approach, the minimum gusset length to 
eliminate web strengthening is:

	
L ≥g1

2Mf 1

vVϕ n �
(15)

which is equivalent to:

	
L ≥g1

2FV1em

vVϕ n �
(16)

A subsequent section addresses member selection to avoid 
web reinforcement.

Concentrated Forces

The limit states of web local yielding and web crippling 
typically can be satisfied without reinforcement at chevron 
connections, especially those designed using the Uniform 
Stress Method. These limit states can be evaluated consid-
ering two concentrated forces (Ru), each acting on a bearing 
length of 2Lg:

	
Ru1 =

FN1

2
±

2Mf 1

Lg1 �
(17)

(e.g., F1,1sinγ1,1 or F1,2sin γ1,2); it may be greater or smaller 
than the trigonometric component, depending on the geom-
etry of the connection. The difference between the two is 
the shear carried by the gusset, Vg1, as indicated in Equa-
tion 10. The longer the gusset plate, the lower the shear in 
the main member due to the chevron moment, Vmc1, and 
thus the greater the shear resisted by the gusset, Vg1. This 
is similar to a moment connection in which beam haunches 
can be used to engage a larger column panel-zone height. 
In this sense, the gusset plate can be used as external shear 
reinforcement for the beam, although in this method, it is 
the length of the gusset that permits it to provide a larger 
arm for transfer of the chevron moment (and thus reduce the 
force imposed on the main member) rather than a simple 
addition of member and gusset shear strength.

Note that this member shear in Equation 14, Vmc1, is due 
only to the force components parallel to the member axis 
(shear on the connection). The unbalanced normal compo-
nent does cause shear in the member, but this unbalanced-
component shear becomes zero at the workpoint and thus is 
not considered in conjunction with shear from the balanced 
component (i.e., the shear from Equation  14). Figure  14 
shows a shear diagram for brace-induced shears in a typical 
pin-end beam consistent with Equation 13.

Note that the maximum member shear occurs at the gus-
set midpoint (where the member shear neglecting connec-
tion effects is zero), and thus the member shear outside of the 
connection does not affect the maximum shear in the con-
nection region. Concentrated loads within the connection 

Fig. 13.  Uniform Stress Method (after Fortney and Thornton).
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Moment

Shear forces in the member have an effect on member 
moment. While this effect is generally small, Fortney and 
Thornton (2015) describe conditions in which the beam 
moment determined using these assumptions (if not con-
sidered in design) may necessitate reinforcement using the 
Uniform Stress Method. Hadad and Fortney (2020) show 
that in finite element analyses, the beam moments are sub-
stantially lower than those calculated using the Uniform 
Stress Method. While the authors do not propose evalua-
tion of the member moment within the connection region as 
necessary, examination of the effects that contribute to the 
moment may aid in understanding of the method.

Beam Moment

In the case of a chevron beam, braces are often considered to 
be a support point for the beam for wind design. For seismic 
design of ductile systems, the expected behavior typically 
entails brace yielding with resulting transverse loading of 
the beam causing beam shear and bending. [See, for exam-
ple, AISC Seismic Provisions Section F2.3(b).] The beam 
is evaluated for these forces (adding any gravity loading 
effects) in combination with the axial force resulting from 
the components of brace force parallel to the member axis. 
The combined effect of the moment Mf1 and the brace force 
components parallel to the member axis, FV1, produces no 
shear or flexure outside of the connection region.

For the chevron beam connection, MBm  = 0, and thus 
Mf = MCh. Beam moments within the connection region are 
described by the following equation:

M1 x( ) = 2MCh1

Lg1
x +− −

− − −

2MCh1

Lg1
2 x x

MFV1

Lg1
x

FN1
Lbeam

4

Lg1

8

x2

2Lg1

⎛

⎝⎜
⎞

⎠⎟ �

(18)

Note that Equation 18 includes more than the integral of 
the member shear formula (Equation 13). It also includes a 
distributed moment due to the applied force parallel to the 
member axis, FV1, at the gusset–flange interface (which, for 
simplicity, is assumed to be uniformly distributed along the 
length of the gusset):

	

MFV1

Lg1
= FV1em

Lg1 �
(19)

Thus:

	

MFV1

Lg1
= MCh1

Lg1 �
(20)

The applied force parallel to the member axis, FV1, thus 
has two equal and opposing effects: the transverse stress 
resulting from MCh, which causes member shear and 
moment, and the distributed moment corresponding to 
MFV. These counteracting effects produce zero moment at 
the ends of the connection region and at the gusset mid-
length; at other locations, some moment may result based 
on the differing rates of accumulation over length within 
the connection region, corresponding to the assumed trans-
verse stress distribution and the assumed distribution of FV1 
over the gusset length.

Fig. 14.  Brace-induced shears in pin-end beam (Uniform Stress Method).
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shear forces outside the connection region are not generally 
large, especially for frames with pin-ended beams.

CONCENTRATED STRESS METHOD

In the preceding discussion, the Uniform Stress Method 
stress distribution was assumed to determine the member 
forces in the connection region. The calculated member 
shear may be reduced by selecting a more favorable dis-
tribution. The Concentrated Stress Method maximizes the 
moment arm within a given gusset length and thus mini-
mizes the corresponding force caused by the moment. This 
method is based on the Optimized Plastic Method (AISC, 
2017), modified to optimize only for moment resistance 
(rather than both moment and normal force) and to allow 
for incorporation of design limits based on both gusset yield 
and member limit states.

In the Concentrated Stress Method, the moment Mf1 is 
assumed to be transferred at the ends of the gusset over 
lengths z1. The remaining segment in the middle of the 
gusset does not participate in transmitting the flexure; it 
is assumed to resist the unbalanced force FN1. Figure  15 
shows this stress distribution.

Member Shear and Minimum Gusset Length

The Concentrated Stress Method converts the moment Mf1 
into a normal force couple Rz1 with a moment arm of ez1. 
This normal force Rz1 is distributed over a length z1. The 
values of Rz1 and ez1 are determined such that Rz1 does not 
exceed the force that would cause shear yielding of the 
member.

Figure 16 shows a shear diagram corresponding to this 
stress distribution for a chevron connection. Note that the 
maximum beam shear in the Concentrated Stress Method 
does not occur at the beam midpoint (as it does for the Uni-
form Stress Method), and thus the beam shear outside of 
the connection affects the maximum shear within the con-
nection region.

The moment arm ez1 is:

	 ez1 = −Lg1 z1� (24)

The normal force from the moment transfer is thus:

Rz1 =
Mf 1

ez1 �
(25)

Rz1 =
Mf 1

L −g1 z1�
(26)

This normal force causes shear in the member. For 
beams, the maximum shear is a combination of the shear 
due to the unbalanced force and the shear due to delivery of 

Equation 18 simplifies to:

M1 x( ) = −−− − −FV1em
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Nonuniform distributions of transfer of the shear force FV 
from the gusset to the beam are also admissible, including 
distributions that minimize or eliminate the local moment 
effect MCh(x) − MFV(x). However, the authors have found 
such approaches unnecessary for demonstrating beam ade-
quacy and, at times, uneconomical for the gusset weld.

A simplified equation can be used to provide a liberal 
estimate of the maximum brace-induced moment in the 
beam:

	
M ≤max1

FV1em

8
+ − −FN1

Lbeam

4

Lg1

8
+ MM

⎛
⎝⎜

⎞
⎠⎟ �

(22)

where MM is the member moment neglecting brace forces 
(typically due to gravity). This equation simplifies the deter-
mination of moment, providing a liberal upper bound by 
combining two maxima: the beam moment corresponding 
to the local shear, Mf1/8, which occurs at the gusset quar-
ter point, and the midspan moment due to the unbalanced 
normal force (the second term) and any other beam loading, 
MM. (The idealization of the unbalanced normal force as a 
point load rather than distributed over the gusset length also 
slightly overestimates the moment.) For the typical braced-
frame case (with forces as shown in Figures 9 and 10), the 
moments from the two gussets are additive, with MM being 
added only once.

The first term in Equation 22, Mf1/8, is a local effect 
of the connection geometry and is typically small, corre-
sponding to a small eccentricity for the axial force in the 
beam (which is typically FV1/4 at the gusset quarter point).

Column Moment

The column is not required to span to resist the unbal-
anced brace forces. The column moment in the connection 
region for the Uniform Stress Method is similar to that from 
Equation 22:

	
Mmax1

FV1em

8
+≤ MM

�
(23)

The effect of any moment MBm on the member moment is 
captured in the term MM, conservatively taken at its full 
value at the quarter point (where the effect of FV is at its 
maximum).

The column moment is typically permitted to be neglected 
in capacity-design calculations for seismic loads per AISC 
Seismic Provisions D1.4a (AISC, 2016a). For other braced-
frame cases this moment is typically very small. The design 
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the chevron moment. The maximum shear is given by the 
following equation:

	 Vmc1 =Vma1 + Rz1� (27)

The shear outside of the connection region, Vma1, is due to 
net normal force, FN1, and the member shear from gravity 
or other sources, VM:

	
Vma1 =

1

2
FN1 +VM

�
(28)

The shear VM is typically zero adjacent to (and within) the 
connection region for beams.

If the gusset is long enough, the total connection shear 
Vmc may be set less than or equal to the design shear strength 
of the member in order to preclude the need for shear rein-
forcement. For a given gusset length, the maximum moment 
transfer can be achieved by the highest concentration of 
stress at the ends. For a minimum gusset length, stiffeners 
at the gusset edges may be used to create a moment arm 

Fig. 16.  Brace-induced shear in pin-end beam with Concentrated Stress Method.

Fig. 15.  Stress distribution for the Concentrated Stress Method.
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This length is minimized by taking the maximum normal 
force Rz1 that the member can resist based on its effective 
shear strength per Equation 30.

Considering combined shear and tension in the gusset, 
the minimum gusset thickness corresponding to the mini-
mum length selected using Equation 34 and the maximum 
normal force Rz1 (equal to Vef1) is determined using the von 
Mises yield criterion, with shear stress over the full gusset 
length and the moment delivered by a force couple.

A gusset that satisfies this criterion is required:
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which is equivalent to:
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The center zone may be similarly examined, although 
generally this zone is much less stressed:
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which is equivalent to:
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(38)

If the required gusset thickness is excessive, a longer gus-
set may be employed. The gusset length required for a given 
gusset thickness is the root of a fourth-power polynomial, 
for which various solution methods are available, including 
trial-and-error and computer solvers. A closed-form solu-
tion may also be derived using Ferrari’s formula (Euler, 
1765). A simple approximate formula can be obtained, 
however, if the shear, FV1, is neglected and Rz1 is set equal 
to Vef1:

	
Lg1 >

Mf 1

Vef 1
+

Vef 1

t ϕg1 tFy �
(39)

As in the design example, a length slightly greater than that 
indicated by Equation 39 is generally satisfactory.

Because of the complexity of the equations for web crip-
pling, that limit state is not integrated into the equations 
for minimum gusset length but may be evaluated after the 
gusset length is determined, as shown in the subsequent 
section.

equal to the gusset length Lg1, similar to a moment connec-
tion in which beam flanges deliver moment to the face of a 
column. For the more typical chevron-moment transfer via 
the gusset plate, the concentrated stress may be limited by 
web local yielding, web crippling, or the gusset yielding.

If the gusset length is minimized (without stiffeners), 
the concentrated stress will be maximized such that the 
full member shear strength is utilized. Unlike the Uniform 
Stress Method, in the Concentrated Stress Method the max-
imum member shear is maintained over a significant por-
tion of the connection length, and thus (for beams) occurs 
at locations that also have shear induced by the unbalanced 
normal force from braces. Considering that some of the 
shear strength is utilized in resisting this unbalanced force, 
the remaining member shear strength that can be utilized 
for the moment transfer is:

	 Vef 1 = −ϕvVn Vma1� (29)

For designs with a gusset on the opposite flange, both the 
design shear strength (ϕVn) and the net shear outside the 
connection (Vma1 − Vma2) can be apportioned between the 
two gusset designs. This is addressed in a later section.

The Concentrated Stress Method is derived such that 
the maximum shear from Equation 26 does not exceed the 
effective shear strength from Equation 29:

	 R ≤z1 Vef 1� (30)

The minimum gusset length possible corresponds to the 
use of stiffeners (flanges) to transfer the moment Mf1. Thus 
as z1 approaches zero, Equation 26 (combined with Equa-
tion 30) gives the minimum gusset length dimension:

	
L for z = 0g 11 =

Mf 1

Vef 1 �
(31)

Without such stiffeners, there is a finite length of gusset 
z1 over which the force Rz1 is transferred to the beam. The 
minimum length z1 may be governed by the limit states of 
web local yielding, web crippling, or yielding of the gusset. 
For web local yielding, AISC Specification Equation J10-2 
(AISC, 2016b) can be rearranged to solve for the minimum 
bearing length z1:

	
z −≥1

Rz1

wwFϕ ytw
5k

�
(32)

The corresponding minimum gusset length based on the 
web local yielding limit state is:

	 Lg1 ez1 +≥ z1� (33)

Combining Equations 24, 32, and 33:

	
Lg1

M f 1

R ϕz1
+ −≥ Rz1
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Gussets Longer than the Minimum Length

In many cases, the gusset length will exceed the minimum 
from Equation 34, due to design considerations such as the 
required gusset thickness or the brace-to-gusset attach-
ment. For gussets longer than the minimum, the designer 
has some flexibility in selecting a stress distribution that 
transfers the moment. Maximizing the length z decreases 
the moment arm and thus increases the force to be resisted; 
it also leaves less weld length for the forces that are resisted 
in the center zone. The authors have found that the total 
weld volume tends to be minimized by minimizing the 
length z1 for optimized weld lengths and sizes. However, in 
many cases, the weld size in the center zone is controlled 
by a minimum weld size, or a proportioning requirement to 
ensure deformation compatibility is used to size the center-
zone weld or the minimum length for z1; in such cases, 
maximizing the length z1 may be more economical.

The minimum length z1 is determined considering web 
local yielding, web crippling, and gusset yielding, consid-
ering the normal force Rz1 acting over the length z1 (and 
combined with a shearing force for the gusset evaluation). 
The force Rz1 corresponding to the length z1 is determined 
by Equation 26 and is bounded by Equation 30.

Considering web local yielding, the minimum length z1 
is:
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The von Mises yield criterion is used to determine the 
minimum length z1 that, for the design loads and a given 
gusset thickness and length, will result in effective stresses 
at the yield limit in the gusset. The shear stress is due to FV1 
and the normal stress is due to the moment Mf1. The thick-
ness should satisfy Equation 36. The length z1 correspond-
ing to the gusset length and thickness selected is obtained 
by combining Equations 24, 26, and 36:
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Considering web crippling, the minimum length z1 can be 
determined by rearranging AISC Specification Equation 
J10-4:
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Due to the number of terms of Equation  42, it is con-
venient to use the maximum value of Rz1 = Vef1 per Equa-
tion 30 rather than solving for z1 using Equations 26 and 
42. Alternatively, web crippling can be evaluated using Rz1 

corresponding to the larger of the values from Equations 
40 and 41.

The minimum value of z1 is the largest of the values from 
Equations 40, 41, and 42. Larger values of z1 may be used up 
to a maximum value of z1 limited by the minimum moment 
arm corresponding to the maximum transverse force:

	
z ≤ −1 Lg1

Mf 1

Vef � (43)

Above this value of z1, the length of the moment arm ez 
is insufficient and the transverse force required to transmit 
the moment will exceed Vef. If this maximum value is nega-
tive the gusset is too short to transmit the moment regard-
less of how concentrated the force delivery can be.

In principle, the maximum value of z1 may also be lim-
ited by stresses in the center region. Use of the additional 
bearing length of 5k (as opposed to 2.5k) in Equation  40 
distributes some of the force Rz1 into the center region. For 
cases with high unbalanced load (or very small dimension 
ez), 2.5k may be used in Equation 40, or the following eval-
uation can be made based on the total transverse force Rz1 + 
FN1 acting on a length Lg1 − z1:

	
z ≤ −1 Lg1

Rz1 + FN1

wFϕ ytw
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Similarly, if the normal force FN1 is large (or the center 
zone is very short), the gusset stress in the center region 
should also be considered. Using the von Misses yield crite-
rion gives this maximum:
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Concentrated Stress Method Validation

Richards et al. (2018) analyzed a number of braced-frame 
beams using finite element models and compared inter-
nal forces with those obtained from the Uniform Stress 
Method and the Concentrated Stress Method (as presented 
by Sabelli and Arber, 2017). Figure  17 shows the results 
of one such analysis (from Figure  3.32 from Richards et 
al.). The finite element analysis results (FE) are shown 
along with the shears determined using the Uniform Stress 
Method (USM) and the Concentrated Stress Method (CSM, 
using the modified method as presented in this paper); the 
beam shear strength, ϕVn, is also indicated. The values of 
maximum shear are reasonably consistent between the 
finite element analysis and the Concentrated Stress Method 
for this example, and while the total shear in the finite 
element model is less than the beam shear capacity, the 
finite element analysis indicated local yielding in the web. 
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The beam shear in the center region is:

V1 x( ) = −Rz1 +
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In the z1 region, the beam shear is:
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Similar to the Uniform Stress Method, the distributed 
moment MFV may be assumed to be transferred over the 
length Lg1 using Equation 19. The brace-induced moment 
in the beam is:

M1(x) = − − − −Rz1x + MFV1
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Similar to the Uniform Stress Method, the two equal and 
opposing effects of the applied force parallel to the member 
axis, FV1, are included in Equation 48: the transverse stress 
resulting from MCh, which causes member shear in addi-
tion to moment, and the distributed moment corresponding 
to MFV, which does not affect the shear. The shape of the 
shear diagram in the Concentrated Stress Method results in 
a somewhat smaller moment within the connection region 
than that corresponding to the Uniform Stress Method.

A liberal estimate may be made by computing the  
connection-induced moment and combining with the mid-
span moment due to overall beam flexure:

Nevertheless, the point of maximum shear is not identical 
between the finite element analysis and the Concentrated 
Stress Method, indicating that the Concentrated Stress 
Method, while useful for design, is not a perfect representa-
tion of the internal stresses.

It should be noted that both Richards et al. (2018) and 
Hadad and Fortney (2020) found that the Uniform Stress 
Method is generally representative of the beam shear at 
levels of loading that do not result in web shear yielding. 
At higher levels of loading, the work of Richards et al. 
(2018) indicates adequate performance of gussets meeting 
the minimum required length for the Concentrated Stress 
Method and exceeding the length required for the Uniform 
Stress Method. Additional comparisons of finite-element 
analyses from Richards et al. with the two design models 
are presented in Sabelli et al. (2020).

Moment

Shear, such as shown in the three analyses represented in 
Figure  17, implies moment. The authors do not propose 
evaluation of the member moment within the connection 
region as necessary but present the equations for moment to 
facilitate understanding of the Concentrated Stress Method. 
Hadad and Fortney (2020) show that in finite element anal-
yses, the beam moments are substantially lower than those 
calculated using the Uniform Stress Method.

Beam Moment

The beam moment is the combination of the integral of the 
beam shear and the distributed moment MFV (Equation 19). 

Fig. 17.  Concentrated Stress Method (CSM) and Uniform Stress Method (USM) analysis of beam from Richards et al. (2018).
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The connection-induced moment due to MCh never 
exceeds MCh/8 (the value for z1 = Lg1/2, which corresponds 
to the Uniform Stress Method distribution). The moment 
is additive with the moment from gusset 2 for the typical 
braced-frame case.

Column Moment

Similar methods can be applied to calculate moment in the 
column within the connection region. Column moments 
due to frame behavior, which reverse over the connection 
depth, are typically additive to the effect of MCh.
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The effect of any moment MBm on the member moment is 
captured in the term MM, conservatively taken at its full 
value. Similar to the beam moment, the column moment 
due to the chevron effect tends to be small.

COMBINATION OF FORCES  
FOR TWO GUSSET PLATES

The member forces derived are for braces on one side with 
opposite forces (one brace in tension and the other in com-
pression). These forces may be combined with gravity-
induced forces and with shear due to flexural restraint for 
frames with moment connections. While the diagrams show 
the left brace in tension and the right brace in compression, 
forces corresponding to the opposite case are easily deter-
mined by using negative values for the brace forces.

For a configuration with braces on both sides of the 
member (such as a two-story X-configuration in a beam), 
brace-induced shears and moments will be additive for the 
typical case in which the story shears are in the same direc-
tion. The effective web shear resistance may be apportioned 
between the two gussets, considering the relative magni-
tudes of their moments, Mf, to permit independent design 
of the two gussets:
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and
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where

	 MTot = Mf 1 + Mf 2� (53)

Other methods of apportionment are admissible, but this 
method allows for design of the gusset connections based 
on member forces established prior to gusset design and 
without additional interdependence.

Uniform Stress Method

In the Uniform Stress Method, the full member shear 
strength generally may be utilized:

	 VefTot = vVn� (54)

Gusset plates may be of different lengths, but for simplic-
ity, they may be set to be equal. If equal-length gussets are 
used (Lg1 = Lg2), Equation 15 for the minimum gusset-plate 
length to preclude the need for reinforcement can be modi-
fied thus:
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Concentrated Stress Method

In the Concentrated Stress Method, the effective beam 
shear strength is reduced:
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If equal-length gussets are used, Equation 34 for the 
minimum gusset-plate length to preclude the need for rein-
forcement can be modified thus:

	
Lg

MTot

V ϕefTot
+ −≥

VefTot

wFytw
5k

�
(57)

Similarly, Equation 39 based on gusset yielding can be 
modified thus:

	
Lg1 >

MTot

VefTot
+

VefTot

t ϕϕg1 tFy �
(58)

MEMBER SELECTION

The procedures described earlier allow for the design of 
a connection based on design forces and the strength of 
a member already selected. Economy in steel construc-
tion can often be achieved by consideration of connection 
requirements in member selection. Equations for required 
beam strength, rather than required gusset length, can be 
derived from the methods presented. Fortney and Thornton 
(2015) suggest a preliminary assumption of a gusset length 
of one-sixth of the beam span for chevron connections; this 
value can be used to facilitate member selection.
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reinforcement, albeit with possible moderate adjustment in 
gusset length. (Use of 75% of the value from Equation 62 
requires ez1∼qLg1; use of 60% requires ez1∼yLg1.)

GUSSET AND WELD DESIGN

The stress distributions assumed in the Uniform Stress 
Method and the Concentrated Stress Method impose dif-
ferent demands on gusset plates and welds. The design of 
those elements should be compatible with each other (and 
with the checks on member local limit states, such as web 
local yielding, web crippling, and panel-zone shear), or the 
connection may not be able to resist the applied forces. For 
example, if the design for local limit states is based on the 
Uniform Stress Method, but the gusset thickness is sized 
using the optimized plastic stress method (which is implicit 
in the interaction Equation 9-1 in the AISC Steel Construc-
tion Manual), the member may be subject to a combina-
tion of web local yielding and gusset plate yielding prior to 
developing the required strength. It is recommended that 
the method used for member local limit states be carried 
through the design of the gusset and the weld.

Gusset Design: Section Parallel to Member Axis

Uniform Stress Method

For the Uniform Stress Method, the gusset section at the 
interface with the flange can be evaluated using an interac-
tion method such as the von Mises yield criterion and solv-
ing for the required thickness:

	
tg

4M f 1

tFy Lg1
2 +≥ FN1

tFy Lg1

2

+ FV1

v 0ϕ ϕ ϕ .6Fy Lg1

2⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ �
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Concentrated Stress Method

For the Concentrated Stress Method, the gusset section at 
the interface with the flange is implicitly designed by use of 
a length z conforming to Equations 36 and 38.

Gusset Design: Mid-Length Transverse Section

Statics require that certain forces be transferred across the 
midpoint of the gusset. Figure 18 shows free-body diagrams 
of half of a gusset for both the Uniform Stress Method (a) 
and the Concentrated Stress Method (b).

The normal force on the gusset transverse section (i.e., 
the force parallel to the member axis) for both models is:

	
Ng1 = γ−1

2
FV1 F1,1 cos 1,1

�
(64)

The chevron shear at the connection is due mainly to 
the chevron moment, Mch, which is proportional to the 
eccentricity, em, typically half the member depth. Selection 
of a shallower member reduces the eccentricity and thus 
reduces the chevron shear. Because the shear capacity is 
also proportional to the depth, the member depth appears in 
both the demand and capacity terms, and the required web 
thickness is not a function of member depth.

Uniform Stress Method

Using the Uniform Stress Method equation for minimum 
gusset length for a given member strength (Equation 15), 
the minimum shear strength is

vVn =ϕ ϕv 0.6Fydmtw� (59)

vVn
2Mf 1

Lg1
+≥ϕ

2Mf 2

Lg2 �
(60)

vVn
FV1dm

Lg1
+≥ϕ FV 2dm

Lg2 �
(61)

Note that the member depth appears both in the demand, 
Mf1, and in the resistance, ϕVn, and thus cancels out in 
Equation 62 for the minimum member web thickness:

	
t ≥w

FV1
Lg1

+ FV 2
Lg2

v 0ϕ .6Fy �
(62)

For beams or columns with small moments due to unbal-
anced normal forces, a shallow member meeting this 
requirement may be economical. Note that the optimal gus-
set length may be a function of member depth.

Concentrated Stress Method

Use of a member with web thickness less than that required 
by Equation  62 necessitates either reinforcement of the 
web or use of a greater moment arm to deliver the moment 
Mf1 than is assumed in the Uniform Stress Method (such 
as ez1 in the Concentrated Stress Method). There is not a 
corresponding simple equation for minimum web thickness 
using the Concentrated Stress Method. However, the mini-
mum gusset length based on beam shear strength with z1 = 
0 (Equation 31) represents a limiting value. This minimum 
gusset length corresponds to a moment arm ez1 equal to Lg1 
(rather than 2Lg1, as corresponds to the Uniform Stress 
Method and Equation 62), and thus, if there are no other 
member shear demands to consider, the required web thick-
ness for this limiting case is half of that from Equation 62. 
A web thickness of 60% to 75% of that given by Equation 62 
(based on an assumed gusset length) generally permits use 
of the Concentrated Stress Method without the need for web 
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which is equivalent to:

	
Ng1 = −γ γ1

2
F1,2 cos 1,1 F1,1 cos 1,2( )

�
(65)

Uniform Stress Method

The shear on this gusset section transverse to member axis 
(for the Uniform Stress Method) is:

	
Vg1 = F1,1 sin 1,1

2M f 1

Lg1
+−γ FN1

2 �
(66)

The gusset moment (for the Uniform Stress Method) is:

	
Mg1 =

2M f 1

Lg1

FN1

2

Lg1

4
+ Ng1 em + −−

dg1

2

FV1

2
em

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟  

� (67)

which simplifies to:

	
Mg1 = Ng1 em + −

dg1

2

FN1Lg1

8

⎛
⎝⎜

⎞
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(68)

Concentrated Stress Method

The gusset shear transverse to member (for the Concen-
trated Stress Method) is:

	
Vg1 = −γF1,1 sin 1,1 Rz1 +

FN1

2 �
(69)

The gusset moment (for the Concentrated Stress Method) 
is:

	

Mg1 = − − −

−

Rz1
Lg1

2

z1

2

FN1

2

Lg1
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(70)

which simplifies to:

	
Mg1 = Ng1 em + −

dg1

2

FN1Lg1

8
+ FN1z1

4
⎛
⎝

⎞
⎠ �

(71)

Note that the terms related to Mf1 and FV1 cancel out in 
both Equations 68 and 71. Thus, the gusset moment is only 
due to the unequal brace force components transverse to the 
member axis (resulting in an unbalanced transverse force 
FN1) and to unequal brace force components parallel to the 
member axis (resulting in a force transfer Ng1 from one half 
of the gusset to the other), with those two effects offsetting 
each other.

The gusset should be evaluated for the interaction of 
these shear, normal, and moment forces. This may be done 
using von Mises yield criteria or other methods as discussed 
in the AISC Steel Construction Manual (AISC, 2017).

Gusset Design: Diagonal Section (Concentrated 
Stress Method)

Brace-to-gusset connections are typically evaluated for 
the limit state of block shear without consideration of the 
subsequent load path through the gusset. This may not 

	 (a)  Uniform Stress Method	 (b)  Concentrated Stress Method

Fig. 18.  Free-body diagrams of half gusset.
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Note that this length is somewhat greater than the length 
of one of the shear areas used for the block-shear rupture 
check in the gusset plate. In some cases, a simplified check 
with that portion of the block-shear area suffices.

The forces acting to the left of that section are:

	
FX crit =

Xcrit

Lg
FV

�
(77)

If Xcrit is less than or equal to z:

FYcrit =
Xcrit

z
Rz

�
(78)

ecrit =
Xcrit

2 �
(79)

Mcrit = −FYcrit ecrit
D γ γcrit cos

2
+ FXcrit

Dcrit sin

2
⎛
⎝

⎞
⎠ �

(80)

If Xcrit is greater than z1:

	
FYcrit = Rz + FN

X −crit z

Lg 2− z �
(81)

Note that on one side of the gusset, the two terms of Equa-
tion 81 will be additive; that is the more critical condition.

ecrit =
Rz Xcrit

z
2( ) +− FN

X −crit z( )2
2 L −g 2z( )

FYcrit �
(82)

present any significant inconsistency for the Uniform Stress 
Method, which assumes a uniform stress over each half of 
the gusset, but may for the Concentrated Stress Method, 
in which high stresses are assumed at the gusset zones z1. 
In order to ensure that the gusset has sufficient strength to 
transfer the force Rz1 to the region z1 in the gusset-to-beam 
connection, the gusset should be evaluated along a diagonal 
section, as shown in Figure 19. That section is aligned with 
the outside shear area used in the block-shear calculation 
and projected to the beam–gusset interface.

The intersection of the diagonal section with the gusset 
edge occurs at a point defined by the dimension Xcrit:

	
Xcrit = − −

Lg

2 γ γ
em

tan

W

2sin �
(72)

thus,

	
Xcrit = −

Lg

γ
dm cos +γ W

2sin2 �
(73)

The length of the section is determined using the dimen-
sions indicated in Figure 19:

Dclip
sin γ

= γ − −Xcrit tan dg Yclip( )
�

(74)

Dcrit = −Xcrit
cos γ

Dclip
�

(75)

Dcrit = − γγXcrit cos + dg Yclip( )sin � (76)

Fig. 19.  Critical gusset section.
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Mcrit = −FYcrit ecrit
D γγcrit cos

2
+ FXcrit

Dcrit sin

2
⎛
⎝

⎞
⎠ �

(83)

The forces are transformed to act on the diagonal section:

Vcrit = γ γFXcrit cos + FYcrit sin � (84)

Ncrit = γ γ−FXcrit sin FYcrit cos � (85)

The gusset should be evaluated for these forces using an 
interaction method such as the von Mises yield criterion or 
interaction Equation  9-1 in the AISC Steel Construction 
Manual.

Weld Design

The design of welds should provide adequate strength to 
transfer forces across the gusset-to-beam interface (FV, 
FN, and Mf) and adequate ductility to achieve the assumed 
stress distribution. The weld size for a double fillet need 
not exceed s of the gusset thickness (for an adequately 
sized gusset), as discussed for single-plate connections in 
the AISC Steel Construction Manual (2017); this weld size 
permits yielding of the gusset before weld rupture. (This 
proportioning rule implicitly accepts use of a resistance 
factor greater than 0.75.) Weld sizes greater than s of the 
gusset thickness are not effective in developing their full 
force because they are limited by the gusset capacity (and 
thus also indicate an inadequate gusset thickness); however, 
increasing a weld that requires less than s of the gusset 
thickness up to this value allows for yielding of the gusset 
before weld rupture and thus permits stress redistribution.

Uniform Stress Method

Under the Uniform Stress Method, the weld adequacy 
should be evaluated using methods from the AISC Steel 
Construction Manual, such as the instantaneous center of 
rotation, which represents both weld strength and the limits 
on weld ductility. As a minimum, the weld should be large 
enough to resist the local stress consistent with the Uniform 
Stress Method. The required strength per unit length is:
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4Mf 1
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2 + FN1

Lg1
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The AISC Seismic Design Manual (2018) utilizes the 
25% increase related to gussets at beam-column-brace con-
nections to promote ductility per the AISC Steel Construc-
tion Manual and Hewitt and Thornton (2004). Hadad and 
Fortney (2020) determined a ratio of maximum to average 
stress of approximately 3 (including a standard deviation) 
for weld stresses in their finite element analyses of chevron 
connections. They suggest that the factor of 3 be applied in 

the design of the weld (which need not exceed the size cor-
responding to the gusset-plate strength).

Concentrated Stress Method

The Concentrated Stress Method inherently addresses non-
uniform stress in the gusset and may indicate stresses in the 
z region much higher than indicated by the Uniform Stress 
Method. As such, the increase to address nonuniform stress 
is not proposed for this method.

For designs employing the Concentrated Stress Method, 
stresses may redistribute along the weld due to beam inelas-
ticity. As such, the stress distribution corresponding to the 
instantaneous center of rotation method may be impossible 
to achieve with the beam web strength provided. The weld 
in the z1 zones should be evaluated for the force normal to 
the member axis, Rz1. For welds in the center region (Lg1 − 
2z1), the normal force is FN1. The shear force (parallel to 
the member axis) in both regions may be taken as FV1/Lg1. 
Often the weld size required in the z regions will be sub-
stantially greater than that required in the center region.

To address strain compatibility of the linear weld group 
consisting of a larger weld size in the z regions and a 
smaller size in the center, two measures are proposed. First, 
the weld size in the z region may be sized to develop the 
strength of the gusset plate (e.g., a double fillet weld of at 
least s of the gusset thickness); this ensures that the defor-
mation required of that zone of the joint may be provided 
by the gusset, and thus the full strength of both that region 
and the center region can be achieved.

Second, the two welds may be proportioned so that their 
strains are consistent with the design strength utilized. This 
may be done by analyzing the deformation of the differ-
ent weld elements, as in the instantaneous center of rota-
tion method. The authors have found satisfactory designs 
by proportioning the weld group with the weld in the center 
zone being s of the size of the welds in the z region and 
then extending the larger z-region weld to the 4 point of 
the gusset at each end. It is expected that, with more study, 
those minima could be reduced or eliminated. Alterna-
tively, the weld size selected for the z region may be used 
for the entire gusset length.

PROPOSED DESIGN PROCEDURE

The design of chevron and full-height gussets may be gov-
erned by design considerations other than the local forces 
addressed in this paper. In such cases, the material effi-
ciency of the Concentrated Stress Method cannot be real-
ized, and the Uniform Stress Method (which is simpler 
to implement) may be convenient. The following design 
procedure may be used to minimize the complexity of the 
required calculations:
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length and this minimum length. If this length 
is excessive, consider reinforcing the member 
web (or using a different member).

3.1.2.	Determine the required gusset thickness per 
Equations 36 and 38. Revise gusset length if 
necessary.

3.2.	Analyze connection and check member

3.2.1.	Determine the length of the zone z (Equa
tions 40, 41, and 42). Use the maximum length 
from these three equations.

3.2.2.	Determine the concentrated force Rz (Equa- 
tion 26).

3.2.3.	Determine Vmc (Equation 27); check member 
shear.

3.3.	Design gusset.

3.3.1.	 Check the gusset section at the interface 
with the flange in the center zone. (Gusset 
horizontal section at the interface with the 
flange in the z zone is implicitly checked by 
the required thickness calculation.)

3.3.2.	Check the transverse gusset section for the 
forces from Equations  65, 69, and 71. (Any 
procedure in the AISC Manual may be used.)

3.3.3.	Check the diagonal gusset section for the 
forces from Equations 80 (or 83), 84, and 85. 
(Any procedure in the AISC Manual may be 
used.)

3.4	 Design weld.

3.4.1.	 Design zone z weld.

3.4.2.	Design center-zone weld.

Note that this recommended design procedure implicitly 
checks member shear in the connection region for both 
the Uniform Stress Method and the Concentrated Stress 
Method. It does not include a check of the member for 
combined axial and bending forces within the connection 
region based on the authors’ experience and judgment.

1.	Establish parameters.

1.1	 Determine the forces FV, FN, and Mf, acting on the 
gusset-member interface.

1.2	 Determine the optimal gusset-plate length based 
on the brace-to-gusset connection (and any other 
considerations). If desired, determine the optimal 
gusset thickness.

1.3	 For connections with gussets on opposite flanges, 
determine shear-strength apportionment for the two 
gussets per Equations 51 and 52.

2.	Try the Uniform Stress Method.

2.1.	Check if the optimal gusset-plate length exceeds the 
minimum length required for the Uniform Stress 
Method using Equation 15 or 55. If so:

2.2.	Check member.

2.2.1.	Determine Vmc (Equation 14); check shear.

2.2.2.	Evaluate web local yielding and web crippling 
Equation 17.

2.3.	Design gusset.

2.3.1.	Design the gusset section parallel to the 
member axis using the Uniform Stress Method 
Equation 63.

2.3.2.	Check the transverse gusset section for the 
forces from Equations 65, 66, and 68. (Any 
procedure in the AISC Manual may be used.)

2.4.	Design the gusset–member interface weld. (Design 
for peak stress using the Uniform Stress Method 
distribution; apply appropriate ductility factor or size 
to develop the gusset plate strength.)

3.	If the Uniform Stress Method design is unsatisfactory, 
try the Concentrated Stress Method.

3.1	 Select gusset length.

3.1.1.	 Check minimum length required for the 
Concentrated Stress Method (Equation  34). 
Use the maximum of the optimal gusset-plate 
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DESIGN EXAMPLE

The connection shown in Figure 20 will be designed following the recommended procedure, proceeding from the Uniform 
Stress Method to the Concentrated Stress Method developed in this study to eliminate reinforcement.

Given:

The brace design forces are presented in Table 1. All brace angles are 50.2° from horizontal. To facilitate subsequent calcula-
tions, the shear and normal components of the brace forces are determined and presented in the table.

Both beam and gusset are Grade 50 material. The beam is a W24×94 (ϕVn = 375 kips; A=27.7 in.2; Z=254 in.4), 25 feet long. 
The workpoint is at the beam centerline:

em = dm

2
= 12.15 in.�

(8)

The beam moment due to loading other than from braces, MM, is 80 kip-ft.

Based on the brace-to-gusset connection (not shown), the minimum gusset length is 48 in. For the brace-to-gusset connection 
design, a w-in.-thick gusset is optimal, and the depth required is 21 in.

Fig. 20.  Design example.

Table 1.  Brace Forces

Brace Axial Force 
F

(kips)

Shear Component
F cos(γγ )

(kips)

Normal Component
F sin(γγ )
(kips)

F1,1 568 364 436

F1,2 653 418 502

F2,2 511 327 393

F2,1 588 376 451
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Solution:

Design of Gusset 1

1.  Establish Parameters

Optimal gusset dimensions have been given. The forces acting on the flange from each of the gussets is shown in Table 2, 
which also shows the apportionment factors for beam effective shear strength.

2.  Try the Uniform Stress Method

The minimum gusset length is determined from:

L ≥g
2MTot

VefTot

= 18,000 kip-in.

375 kips

= 96.1 in. �

(55)

For 48-in. gussets both above and below the beam, the Uniform Stress Method requires a web thickness of:

t ≥w

FV1
Lg1

+ FV 2
Lg2

v 0.6ϕ Fy

= FV1 + FV 2

v 0.6ϕ FyLg

= 782 kips+ 703 kips
(1.0)0.6 50 ksi( ) 48 in.( )

= 1.03 in. �

(62)

This would require a W24×250. (Using the same gusset length, a W21×248 or a W18×211 would also be suitable.) Alterna-
tively, an increase in effective shear strength of 96.1/48 = 2.0 could be achieved by a web doubler of w × 18 in.:

L ≥g
2MTot

VefTot

= 2MTot

vVnbeam + ϕϕ( )vVndoubler

=
2 18,000 kip-in.( )

375 kips+1.0 0.6( ) 0.75 in.( ) 18 in.( ) 50 ksi( )[ ]
= 46.2 in. �

(55)

Table 2.  Connection Forces

Equation Gusset 1 Gusset 2
Combination  

(total or difference)

FV (i) (kips) 1 782 703 78.5

FN (i) (kips) 2 65.5 58.9 6.6

Mf (i) (kip-in.) 3 9500 8550 18000 

Vef (i)/VefTOT 51; 52 0.526 0.474 1.0
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The minimum extents of the doubler can be determined using Equation 13.

The Uniform Stress Method would require a 96-in. gusset without reinforcement, a much heavier beam, or significant rein-
forcement to permit a gusset on the order of the optimal 48-in. length. As none of these is desirable, the design will proceed 
with the Concentrated Stress Method.

3.  Try the Concentrated Stress Method

For the Concentrated Stress Method, the effective shear strength, VefTOT, must be reduced considering the net unbalanced force:

VefTot = −−ϕvVn
FN1

2

FN 2

2

= −375 kips
6.6 kips

2
= 372 kips �

(56)

The lower gusset will be designed to utilize no more than 52.6% of the available member shear strength per Equation 51.

Vef 1 =
Mf 1

MTot
VefTot

= 9,500 kip-in.

18,000 kip-in.
372 kips( )

= 196 kips �

(51)

Minimum Gusset Length and Corresponding Thickness

Assuming (for preliminary design) that the transverse force Rz1 is equal to this effective shear strength, the minimum gusset 
length is:

Lg1 >
Mf 1

Vef 1
+ −

Vef 1

wFϕ ytw
5k

= −9,500 kip-in.

196 kips
+ 196 kips

1.0( ) 50 ksi( ) 0.515 in.( ) 5 1.38 in.( )

= 49.2 in. �

(34)

The approximate length that corresponds to a w-in. gusset is:

Lg1 >
Mf 1

Vef 1
+

Vef 1

tFϕ ytg1

= 9,500 kip-in.

196 kips
+ 196 kips

0.9( ) 50 ksi( ) 0.75 in.( )
= 54.3 in. �

(39)

As this length does not include the effect of the shear, a slightly larger value will be used, and the effect of shear addressed in 
the determination of the minimum length z1. A 56-in. effective gusset length will be investigated. (The length also results in an 
economical weld design, which is presented later in the example.) The detailed length is 58 in., recognizing that the weld will 
not extend to the very end of the gusset.
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The minimum bearing length z1 based on the limit states of web local yielding and web crippling is:

z −−−≥1
Lg1

2

Lg1
2

4

Mf 1

wFytw
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= −−−56.0 in.

2
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4
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(42)

The low value from Equation 40 and the negative value from Equation 42 indicate that the force being developed, Rz, does not 
require a significant bearing length to satisfy the limit states of web local yielding and web crippling.

The minimum length z1 corresponding von Mises yield criterion for stresses in the gusset is obtained from Equation 41:

z1 = −

−

−
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2

Lg1
2

4

Mf 1
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(41)

The maximum length z1 is:

z1 L≤ −g1
Mf 1

Vef1

= −56.0 in.
9,500 kip-in.

196 kips

= 7.51 in. �

(43)

The value from Equation 41 will be used. The corresponding transverse force is:

Rz1 =
Mf 1

L −g1 z1

= 9,500 kip-in.

56.0 in. 7− .38 in.
= 195 kips �

(26)

The limit states of web local yielding, web crippling, and gusset combined tension and shear yielding are implicitly checked 
by the gusset-length selection and this length z1 determined above (Equations 40, 42, and 41). This value may also be used 
to check gusset stress using Equation 36; however, gusset stress is implicitly checked by the selection of a dimension z1 that 
complies with Equation 41.
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The beam shear is evaluated considering 52.6% of the shear due to the total unbalanced force:

Vmc1 =Vma1 + Rz1

=
M −f 1

MTot

FN1 FN 2

2
+ Rz1

= 0.526
6.6 kips

2
+ 195 kips( )

= 197 kips

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(27)

Vmc1

vVϕ n
= 197 kips

375 kips

= ≤0.525 0.526 o.k.

This is consistent with the apportionment of available beam shear strength between the two gussets established in Table 2.

Beam Moment and Axial Force in Gusset Region

For completeness, the combined effects of the internal beam moment and axial force are evaluated. (The proposed design 
procedure does not include this evaluation.)

Although Equation 49 permits a more precise calculation of beam moment, the moment is typically small, and the upper-bound 
value is used here for convenience for gusset 2, as that design has not been performed. Adapting Equation 49 to include the 
effect of two gussets gives:

Mmax = − −
−MCh1

2

z1

Lg1

z1

Lg1

2

+ MCh2

2

z2

Lg2

z2

Lg2

2

+ FN1 FN 2( )Lbeam

4
+ MM

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

For gusset 1:

1

2

z1

Lg1

z1

Lg1

2

=− −1

2

7.38 in.

56.0 in.

7.38 in.

56.0 in.

2

= 0.0572

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

For gusset 2, the dimension z2 has not been determined. In this example (with Mf2 < Mf1), z2 could reasonably be assumed to 
be less than or equal to z1 if Lg2 = Lg1. The general limit is:

1

2

z2

Lg2

z2

Lg2

2
1

8
≤− ⎛⎝

⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Mmax 0.0572
9,500 kip-in.

12 in./ft
+≤

≤

0.125
8,550 kip-in.

12 in./ft
+

65.5 kips 58.9 kips−( ) 25 ft( )
4

+ 80 kip-ft

255 kip-ft

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The axial force is conservatively taken as the maximum at the end of the connection region, assuming a symmetric distribution 
of collector forces:

Pu = −
FV1

2

FV 2

2

= −782 kips

2

703 kips

2
= 39.5 kips
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Assuming the section is fully braced at this location, the full section strength is used:

cPn = ϕϕ c AsFy

= 0.9( )(27.7 in.2)(50 ksi)
= 1,250 kips

bMn = ϕϕ bZFy

= 0.9( )(254 in.3)(50 ksi)
= 11,400 kip-in.

= 953 kip-ft.

Pu

cPϕ n
= 0.03

Mu

bMϕ n
= 0.27

The interaction check from AISC Specification Equation H1-1b is used:

1

2 ϕϕ
Pu

cPn
+ Mu

bMn
= 1

2
0.06( )+ 0.27

= 0.30 o.k. �

(from Spec. Eq. H1-1b)

Gusset Selection

A w-in.-thick, 21-in.-deep, and 58-in.-long (56-in. effective length) gusset will be investigated.

tg1 = 0.75 in.

dg1 = 21.0 in.

Lg1 = 56.0 in.

Gusset Check at Section Parallel to the Member Axis at Beam Flange

The Concentrated Stress Method implicitly checks the gusset over the lengths z1 for combined stresses in determining the 
minimum length z1 (Equation 41). For the center zone between the lengths z1, Equation 38 gives the interaction ratio:

FV1

v 0 ϕϕ .6Fytg1Lg1

2

+ FN1

tFy tg1 Lg1 2z1( )

2

= 782 kips

0.6 50 ksi( ) 0.75 in.( ) 56.0 in.( )

2

+ 65.5 kips

0.9( ) 50 ksi( ) 0.75 in.( ) 5 −6.0 in. 2 7.38 in.( )[ ]
2

= 0.622

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

�

(38)

Gusset Check at Mid-Length Transverse Section

The adequacy of the gusset depth is verified examining a section of the gusset transverse to the member axis. (See Figure 18.) 
The gusset force in direction of member is:

Ng1 = − γγ1

2
F1,2 cos 1,2 F1,1 cos 1,1( )

= −1

2
418 kips 364 kips( )

= 27 kips �

(65)
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The axial resistance of the gusset is:

tPn =ϕ 0.9Fy dg1tg1

= 0.9( ) 50 ksi( ) 21.0 in.( ) 0.75 in.( )
= 709 kips

The gusset moment is:

Mg1 = Ng1 em + − −
dg1

2

FN1

2

Lg1

4

z1

2

= − −27 kips( ) 12.15 in.+ 21.0 in.

2

65.5 kips

2

56 in.

4

7.38 in.

2
= 280 kip-in.

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(71)

The flexural resistance of the gusset is:

bMn =ϕ 0.9Fy
dg1

2 tg1

4

= 0.9 50 ksi( ) 21.0 in.( )2 0.75 in.( )
4

= 3,720 kip-in.

Gusset shear transverse to member:

Vg1 = −γF1,1 sin 1,1 Rz1 +
FN1

2

= −436 kips 195 kips+ 65.5 kips

2
= 274 kips �

(69)

The shear resistance is:

vVn =ϕ 1.00 0.60Fy( )dg1tg1

= 1.00 0.60( ) 50 ksi( ) 21.0 in.( ) 0.75 in.( )
= 473 kips

Using the von Mises interaction equation:

Mg1

tMn
+

Ng1

tP ϕϕϕ n

2

+
Vg1

vVn

2

= 280 kip-in.

3,720 kip-in.
+ 27 kips

709 kips

2

+ 274 kips

473 kips

2

= 0.590

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Gusset Check along Diagonal Section

The gusset will be checked along the critical diagonal section (Figure 19). The bolt gage, W, is 8 in. and the transverse dimen-
sion Yclip is 8.0 in.

Xcrit = −
Lg1

2

−

γ
dm cos +Wγ

2sin

= 56.0 in.

2

24.3 in.( )cos 50.2°( ) +8 in.

2sin 50.2°( )
= 12.7 in. �

(72)
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This value is greater than z1.

The diagonal section length is:

D γγcrit = −Xcrit cos + dg1 Yclip( )sin
= 12.7 in.( )cos 50.2°( ) + −21.0 in. 8 in.( )sin 50.2°( )
= 18.1 in. �

(75)

The forces acting on the section are:

FX crit =
Xcrit

Lg1
FV1

= 12.7 in.

56.0 in.
782 kips( )

= 177 kips �

(77)

FYcrit = Rz1 + FN1
X −crit z1

L −g1 2z1

= 195 kips+ 65.5 kips( ) 1 −2.7 in. 7.38 in.

56.0 in. 2− 7.38 in.( )
= 204 kips �

(81)

ecrit =
Rz1 Xcrit

z1

2
+− FN1

X −crit z1( )2

2 L −g 2z1( )
FYcrit

=
195 kips( ) 19 −5 kips

7.38 in.
2

+ 65.5 kips( ) 12.7 − in. 7.38 in.( )2
2 56.0 in. 2 7− .38 in.( )[ ]

204 kips

= 8.72 in.

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(82)

Mcrit = FYcrit ecrit
Dcrit cos

2
+ F− Xcrit

Dcrit sin

2

γ γ

= −204 kips( ) 8.72 in.
18.1 in.( )cos 50.2°( )

2
+ 177 kips( ) 18.1 in.( )sin 50.2°( )

2
= 1,825 kip-in.

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

�

(83)

V γ γcrit = FXcrit cos + FYcrit sin

= 270 kips �

(84)

Ncrit = γ−γFXcrit sin FYcrit cos

= 177 kips( )sin 50.2 −°( ) 204 kips( )cos 50.2°( )
= 5 kips �

(85)

The gusset is evaluated for these forces using the von Mises yield criterion:

4 Mcrit

tFytg1Dcrit
2 + Ncrit

tFytg1Dϕϕ ϕcrit

2

+ Vcrit

v 0.6Fytg1Dcrit

2

=
4 1,825 kip-in.( )

0.9( ) 50 ksi( ) 0.75 in.( ) 18.1 in.( )2 + 5 kips

0.9( ) 50 ksi( ) 0.75 in.( ) 18.1 in.( )

2

+ 270 kips

1.00 0.60( ) 50 ksi( ) 0.75 in.( ) 18.1 in.( )

2

= 0 ≤.94 1.0 o.k.
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Gusset Weld (z-Region)

The weld along the length z1 must deliver a normal force equal to Rz1; it must also deliver a shear force proportional to its length:

Nweld = Rz1
= 195 kips

Vweld =
z1
Lg
Fv1

= 7.38 in.

56.0 in.
782 kips( )

= 103 kips

The weld in this zone therefore resists a force at an angle:

Pu = Nweld
2 +Vweld2

= 195 kips( )2 + 103 kips( )2

= 221 kips

The angle θ is tan-1(195/103) = 62° from the weld axis. Using AISC Specification Equation J2-5:

P ≤ ϕu Rn

= θ

θ

ϕ

ϕ

n 0.6FEXX 1.0 + 0.5sin1.5( ) 2

2
wLw

w
Pu

n 0.6FEXX 1.0 + 0.5sin1.5( ) 2
2

2z1( )

w ≥

≥

221 kips

0.75( )0.6 70 ksi( ) 1.0 + 0.5sin1.5 62.2°( ) 2 7.38 in.( )
= 0.474 in.

⎡⎣ ⎤⎦

A double-sided 2-in. fillet weld will be used. The weld size need not exceed s of the gusset plate thickness:

w ≤ 5

8
tg1

= 5

8
0.75 in.( )

= 0.469 in.

This weld must include the z region; a 14-in. length will be used to extend to the gusset 4 points. Because this weld fully devel-
ops the gusset strength, deformation compatibility is inherently addressed.

Gusset Weld (Center Region)

The weld in the center region must be checked. The required strength is based on:

L − −g1 2z1 = 56.0 in. 2 7.38 in.( )
= 41.2 in.

Nweld = FN1

= 65.5 kips
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Vweld = FV1
Lg1 2− z1
Lg1

= 782 kips( ) 56.0 in. 2− 7.38 in.( )
56.0 in.

= 576 kips

Pu = Nweld
2 +Vweld2

= 65.5 kips( )2+ 576 kips( )2

= 579 kips

The angle θ is tan-1(65.5/576) = 6.5°. Using AISC Specification Equation J2-5:

w
Pu

n 0.6Fϕ
≥

θEXX 1.0 + 0.5sin1.5( ) 2
2

2 Lg1 2− z1( )

= 579 kips

0.75( )0.6 70 ksi( ) 1.0 + 0.5sin1.5 6.5°( ) 2 41.2 in.( )
= 0.310 in.

⎡⎣ ⎤⎦

A pair of the c-in. fillet welds will be used.

The weld group consisting of the z-region and center welds conforms to both of the deformation compatibility recommenda-
tions: the z-region welds develop the gusset strength and extend to the gusset 4 points, and the center region welds are s of 
the size of the welds in the z-regions.

Design Summary

Figure 21 shows the design based on the calculations above. The 2-in. fillet welds in the z-regions are presented as x-in. fillet 
welds over the c-in. full-length fillet welds.

A similar design is required for gusset 2. If the same method is followed, the beam shear resulting from the two gussets (each 
designed for a portion of Vef) combined with the net unbalanced load will not exceed the beam shear capacity.

Fig. 21.  Gusset design.
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CONCLUSIONS

This study provides equations that can be used in the design 
of bracing connections to eliminate the need for web rein-
forcement. Recommendations are made for the selection 
of braced-frame beams and columns to facilitate connec-
tion design. The design method allows engineers to use the 
gusset plate to limit the shear demand on the member web. 
These equations can be used to assess the effects of mem-
ber depth and gusset length on the required member shear 
strength in order to optimize member selection and gusset 
design. The Concentrated Stress Method presented allows 
for significantly smaller gusset plates than the Uniform 
Stress Method for an unreinforced section. For cases in 
which the Uniform Stress Method requires an undesirably 
large gusset or the use of a web doubler, the Concentrated 
Stress Method may permit a more economical design.
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ABSTRACT

The paper “Design for Local Member Shear at Brace and Diagonal-Member Connections: Full-Height and Chevron Gusset” (Sabelli and 
Saxey, 2021) develops equations for checking local member shear demands using a Concentrated Stress Method (CSM) and presents a 
design example. This discussion presents results from a finite element (FE) model, based on the design example in the paper, to quantify 
the accuracy of the proposed design equations in predicting beam yielding. The FE model confirmed that the beam yielding state would not 
have occurred for the example frame under the design forces but would have occurred for forces about 4% higher. The stress and strain 
distributions observed in the FE model were consistent with those assumed in the CSM, although two points for potential refinement were 
noted. If beam yielding in a concentrically braced frame is forced, through oversized braces, the plastic mechanism would be like an ec-
centrically braced frame (EBF) but with higher yield force and higher beam inelastic rotations and strains for the same inelastic story drift.

INTRODUCTION

The paper being discussed is one of several articles 
that have appeared in the AISC Engineering Journal 

addressing local member shear demands in braced frames 
(Fortney and Thornton, 2015, 2017; Fortney, 2020; Hadad 
and Thornton, 2022; Roeder et al., 2021; Sabelli and Bolin, 
2022; Sabelli and Saxey, 2021; Sabelli et al., 2021). In the 
paper, the authors develop equations for checking local 
member shear demands in braced frames using a Concen-
trated Stress Method (CSM) and present a design example.

Figure 1 shows braced frames with different governing 
limit states. For seismic design, it is the intent of the Seis-
mic Provisions for Structural Steel Buildings (AISC, 2016) 
that a brace yielding limit state govern [Figure  1(a)]. For 
nonseismic design, it could be fine for a beam shear yield-
ing limit state to govern [Figure  1(b)], but the limit state 
needs to be checked explicitly to ensure that it is not reached 
under the design loads. Sabelli and Saxey (2021) outline the 
procedure for checking this beam shear yielding limit state 
[Figure 1(b)]. In their design example of a seismic frame, 
they use CSM to check beam yielding [Figure 1(b)] in order 
to ensure that brace yielding actually governs [Figure 1(a)].

In the paper, the authors cite previous work where 
finite element models were used to investigate beam shear 
demands in chevron frames (Richards et al., 2018). While 
results from those finite element (FE) models were consis-
tent with the CSM design method, those FE models were 
somewhat limited in their ability to predict post-yield 
behavior.

The publication of Sabelli and Saxey (2021), including 
their thorough design example (CSM example), provided an 
opportunity for more robust FE validation. To determine 
the accuracy of their equations for checking beam shear 
yielding, FE analysis was performed on a model based 
on their design example. In the CSM example, the beam 
was capacity-designed based on the maximum forces that 
could be delivered by the braces [Figure 1(a)], but in the FE 
model, the braces were given unlimited strength to force the 
beam shear yielding mechanism [Figure  1(b)] to develop. 
The FE model answered three questions:

•	 Was the CSM used by Sabelli and Saxey (2021) accurate?

•	 What load would have caused shear yielding in the beam?

•	 What would have happened if a beam shear mechanism 
developed?

The answers to the first two questions are pertinent for new 
design. The answer to the last may be pertinent for some 
existing braced-frames where beam local shear yielding 
was not checked during design.

This discussion will describe the FE model and discuss 
the CSM example in the context of the FE model results.
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FINITE ELEMENT MODEL

The geometry of the FE model matched that of the CSM 
example [Figure 2(a)]. The example frame connection had a 
W24×94 beam with gussets that had a 0.75 in. thickness and 
a 56 in. effective length (the gusset was 58 in. long, but the 
weld was held back 1 in. from each end). The four braces 
framing into the beam had an angle of 50.2° off horizontal. 
Figure 1(b) shows the maximum expected brace forces. The 
horizontal components in the lower story sum to 782 kips. 

The gusset was proportioned to be just long enough to pre-
clude beam shear yielding under these forces (based on the 
CSM). The gusset-to-beam welds were 2  in. for the end 
segments (14 in. each end) and c in. for the 28 in. in the 
middle.

The FE model was developed and analyzed with ANSYS 
(2022). Three types of elements were used in the model to 
represent various components efficiently. The gusset plates, 
brace ends, welds, and beam (in the connection region) were 

    
	 (a)  Brace tension/compression yielding	 (b)  Beam shear yielding

Fig. 1.  Braced frames with different governing limit states.

    
	 (a)  Geometry	 (b)  Design loads

Fig. 2.  Frame from the CSM example.
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modeled with solid elements (SOLID186) [Figure 3(a)-(c)]. 
The beam mesh in the connection region had an element 
dimension of 1 in. [Figure 3(b)]. The gusset-to-beam welds 
were modeled explicitly [Figure  3(c)]. Outside the gusset 
region, the beam was represented with elastic beam ele-
ments (BEAM188) [Figure  3(a)] with the cross-sectional 
properties of a W24×94. The braces were represented with 
elastic truss elements (LINK180) to force the beam shear 
yielding mechanism to form. Effective areas were used 
for the brace elements so that the magnitudes of the brace 
forces (relative to each other) would match the relative mag-
nitudes of the forces in the design example [Figure 2(b)].

The boundary conditions and loading in the model were 
for a pushover-type analysis [Figure 3(a)]. The bottom nodes 
of the bottom braces were pinned in space. The beam ends 
and top brace nodes were on rollers that prevented move-
ment in the y-direction and had displacements imposed in 
the x-direction. The relative magnitudes of the top and bot-
tom applied displacements [0.526x in Figure 3(a)] were cali-
brated so that the magnitudes of the brace forces in the two 
stories would match the relative magnitudes of the forces in 
the design example [Figure 2(b)]. Out-of-plane restraint was 
applied to all nodes, including the beam web and gusset.

The materials in the FE model simulated nominal steel 
and weld properties. In the CSM example, the beam and 
gusset were Grade 50 material. In the FE model, the gusset 
and beam material had an elastic modulus of 29,000 ksi, a 
Poisson’s ratio of 0.3, a yield stress of 50 ksi, and a post-
yield modulus of 290 ksi (1% of elastic). A capping stress 
of 65 ksi was set, after which the material had negligible 
further hardening. The weld material in the FE model had 
an elastic modulus of 29,000 ksi, a yield stress of 70 ksi, 
and negligible further hardening. These material mod-
els, with nominal material strengths, were appropriate for 

comparison with design procedures that assumed nominal 
material strength.

The FE model was pushed to a point beyond where the 
beam shear mechanism was fully developed. Figure  4 
shows the pushover curve, where the lateral force is the 
total applied load on the frame. Figure 4 shows six particu-
lar load points, and Table  1 summarizes the significance 
of each point. Figures 5 through 9 show stress and strain 
information corresponding to those particular points.

The evolution of the von Mises stress is shown in Fig-
ure 5. At a load of 616 kips [Figure 5(a)], there was a region 
of the beam web at midspan where the von Mises stress 
exceeded 50  ksi. This region propagated until it reached 
the extents of the gusset around 815 kips [Figure 5(d)]. At 
873 kips [Figure 5(e)], the von Mises stress exceeded 50 ksi 
for a continuous region of the gusset plate between brace 
ends. The von Mises plot at 1024 [Figure 5(f)] shows regions 
with stresses over 55 ksi, reflecting strain hardening.

The evolution of the plastic strains is shown in Figures 6 
and 7. At a load of 616  kips [Figure  6(a)], there were no 
plastic strains greater than 0.002. At 782 kips [Figure 6(c)], 
localized plastic strains in the beam coalesced to form a 
full-depth region of the beam web at midspan with plastic 
strain over 0.002. This plastic region expanded toward the 
gusset edges. At 873 kips [Figure 6(e)], most of the beam 
in the gusset region was plastic, as well as a region of the 
bottom gusset plate between the braces. Figure  7 shows  
closeup views of the gusset-to-beam weld at the same 
points. At 1024 kips [Figure 7(f)], the plastic regions of the 
weld extended 4  in. in from the ends of the weld (beam  
elements have a 1  in. dimension in the figure), and peak 
plastic strains exceeded 0.1.

Figure 8 shows the evolution of the shear stresses in the 
beam and gussets. In the beam, the shear stress exceeded 

      
	 (a)  Element types and	 (b)  Solid element mesh in	 (c)  Explicit modeling 
	 boundary conditions	 the connection region	 of the welds

Fig. 3.  Finite element modeling techniques.
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[Figure  9(b)–(f)], regions of concentrated normal stress 
(above 20 ksi) developed at the ends of the gusset plates. 
Normal stresses above 50 ksi developed at the highest levels 
of loading considered.

DISCUSSION

In the CSM example, the effective gusset length of 56 in. 
was selected to preclude beam yielding under a lateral force 
of 782  kips (the maximum force that could be delivered 
by the braces). If the CSM were accurate, the beam shear 
yielding limit state would be observed in the FE model at a 
load slightly greater than 782 kips.

The results in Figure  4 through 10  indicate that the 
beam shear yielding limit state was reached at a load a 
little greater than 782  kips. The pushover plot (Figure  4) 
shows softening around 782 kips that continued to develop 

25 ksi at midspan when the applied lateral load was 616 kips 
[Figure 8(a)], and the elevated region expanded as the loads 
increased. However, the shear stress in the beam web did 
not exceed 30 ksi through an entire section until the load 
was 873 kips [Figure 8(e)].

At all stages of loading, the shear stresses in the gus-
set were highest at midspan and decreased near the gusset 
ends. In fact, the shear stresses changed sign in the regions 
at the end of the gusset [Figure 8; signs changed at interface 
of light blue and medium blue], a finding that was docu-
mented in Richards et al. (2018). The gusset locations where 
the shear stress changed sign corresponded with the regions 
with high normal stress (Figure 9).

Figure  9 shows the evolution of y-direction normal 
stresses in the beam and gussets, which were generally low. 
For most regions, the normal stresses were between ±20 ksi 
throughout loading. For loading of 744  kips and above 

Fig. 4.  Pushover curve for the finite element model.

Table 1.  Pushover Points for Discussion

Point Load (kips) Significance

a 616 Von Mises stress exceeded 50 ksi in a localized region of the beam web.

b 744 Localized plastic strains exceeded 0.002 in the beam web and gusset-to-beam welds. 

c 782
Localized plastic strains in the beam, over 0.002, coalesced to a full-depth region of 
the beam web.

d 815
Von Mises stress exceeded 50 ksi for a continuous region between braces in the 
bottom gusset. Change in tangent stiffness. 

e 873 Shear stresses exceeded 30 ksi (0.6Fy) for a full-depth region of the beam web.

f 1024 Maximum load was applied. 
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Fig. 5.  Equivalent (von Mises) stress (ksi) contours in the beam and gussets.

Fig. 6.  Plastic strain contours in the beam and gussets.
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Fig. 7.  Plastic strains at the gusset-to-beam welds (beam flange elements have 1 in. edge length).

Fig. 8.  Shear stresses (ksi) in the beam and gussets.
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to the stable post-yield stiffness by 873  kips. The plastic 
strain plot [Figure  6(c)] shows that at 782  kips, localized 
plastic strains above 0.002 had coalesced at the center of 
the beam. These strains propagated outward, with the beam 
web yielding being fully developed by 873 kips.

It is difficult to quantify precisely where the beam shear 
yielding limit state was reached, but Figure 10 offers addi-
tional insight. Figure 10 shows the tangent stiffness, kt, nor-
malized by the elastic stiffness kelastic for the different levels 
of lateral force. There appears to be an inflection point 

around 815 kips that suggests that the yielding is mature. 
As a sidenote for Figure 10, the stabilized post-yield stiff-
ness (lateral forces greater than 900 kips) was about 10% 
of the elastic stiffness, even though the material hardening 
was only 1% of elastic because of the ratio of plastic beam 
rotation to story drift (to be discussed in the next section).

All these results support the conclusion that the CSM 
used by Sabelli and Saxey (2021) is reasonable for design.

The stress and strain contours in Figures 7 through 9 sug-
gest some refinements for the CSM. In the CSM example, 

Fig. 9.  Normal stresses (ksi) in the beam and gussets.

Fig. 10.  Normalized tangent stiffness corresponding to various levels of lateral force.
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a z1 distance of 7.38 in. was used in design to designate the 
region of the gusset that is assumed to resist the moment at 
the connection through concentrated normal stresses. The 
FE model (Figures 7 and 9) indicated that the actual region 
of concentrated normal stress was somewhat smaller, more 
like 5.0  in. Another point of possible refinement is the 
assumption of the length that is effective for shear transfer. 
In the CSM example, the gusset-to-beam shear is assumed 
to be transferred evenly over the entire length of the gusset 
plate. The FE model demonstrated, as did Richards et al. 
(2018), that z regions did not transmit much shear. A refined 
CSM, with smaller z and shear transfer only in-between z 
regions, may better predict the demands on the gusset-to-
beam welds.

BROADER DISCUSSION OF BEAM SHEAR 
YIELDING AND COMPARISON TO EBF

The CSM example frame would not be expected to expe-
rience significant beam yielding because the forces that 
could be delivered by the braces were lower than the forces 
required to reach the beam shear limit state. However, there 
may be other braced frames where local shear demands 
were not considered in the design and a beam yielding 
mechanism might occur. It is also possible that someone 
might contemplate a new seismic system that intentionally 
yields the beam. In those contexts, results about the extreme 
post-yield behavior of concentrically braced frames with 
beam yielding may be of interest.

The evolution of the shear stress in the beam web (Fig-
ure  8) is similar to that documented in experimental and 
finite element studies of shear-yielding links in eccentrically 

braced frames (EBF) (Hjelmstad and Popov, 1983; Rich-
ards et al., 2007). In discussing the post-yield behavior of 
a concentrically braced frame (CBF) with beam yielding, 
it is informative to compare and contrast with an EBF. An 
EBF FE model was developed to make comparisons with 
the CBF FE model as an academic exercise, see Figure 11.

The EBF model did not represent a code-compliant seis-
mic design, just as the CBF model with a yielding beam did 
not represent a code-compliant seismic design. The purpose 
of the academic exercise was to compare and contrast beam 
yielding mechanisms. The EBF FE model had the same 
beam size (W24×94), beam length, and story heights as the 
CBF (Figure 5). The length of the shear link was 44 in. to 
match the observed intense yielding region in the CBF [Fig-
ure 5(f), red region]. The braces were modeled with elastic 
truss elements (infinitely strong, LINK180). As with the 
CBF model, the beam web and gusset plates were restrained 
against out-of-plane deformations, so stiffeners in the link 
beam or on the gussets were not necessary in the model. 
The nonlinear material properties for the beam were the 
same in the EBF model as they were in the CBF.

Figure 12 compares the inelastic pushover curves for both 
models. Results are shown up to an inelastic drift of 0.004. 
The lateral force that was required to yield the EBF was 
substantially lower than for the CBF with the same beam 
size because the eccentricity of the brace work points in the 
EBF was a more direct and effective way to impose shear 
on the beam web. Also, the CBF gussets help to carry some 
shear, as determined using the CSM. The lower post-yield 
stiffness in the EBF was a reflection of lower strains in the 
beam (less strain hardening).

      
	 (a)  Geometry	 (b)  FE model boundary conditions	 (c)  FE mesh

Fig. 11.  EBF frame for comparison with the CBF.
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Figure 13 compares the inelastic beam rotations versus 
the inelastic story drift for CBF and EBF. The EBF relation-
ship between inelastic beam rotation and inelastic drift was 
within 13% of an estimate from a rigid plastic mechanism 
(Figure C-F3.4, AISC, 2016). The higher inelastic beam 
rotations for the CBF for a particular inelastic drift would 
make the CBF less attractive than EBF for an intentional 
beam yielding mechanism unless high post-yield stiffness 
were the primary aim.

Figure  14 compares the plastic strains and deformed 
geometries of both models at 0.004 rad inelastic story drift. 
The displacements have been scaled by a factor of 6 in both 
cases to illustrate the plastic mechanisms. The maximum 
web plastic strain in the CBF (0.035) is 75% more than the 

maximum plastic strain in the EBF (0.020) at the same 
inelastic drift. Also, the plastic strains are more uniformly 
distributed in the EBF.

The plastic mechanism in Figure 14 has the same form 
as the one postulated by Sabelli and Bolin (2022), where 
the plastic section of the beam is less than the full length of 
the gusset. The plastic strains in the gusset in Figure 14(a), 
including the concentrations of strain at the ends, illustrate 
the gusset/weld deformations required for compatibility 
with the yielding beam.

This academic exercise demonstrates that it is theoreti-
cally possible to design a CBF with a beam yielding mecha-
nism, even though current seismic design provisions do not 
allow it. There are advantages and disadvantages of CBF 

Fig. 12.  Inelastic story drift vs. lateral force for CBF and EBF.

Fig. 13.  Inelastic beam rotation vs. inelastic story drift for CBF and EBF FE models.
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with beam yielding as compared to an EBF. The CBF advan-
tages are greater elastic stiffness, strength, and post-yield 
stiffness. The CBF disadvantages are higher beam rotation 
and higher beam strains to achieve a particular inelastic 
drift (although less inelastic drift might be required for a 
CBF since the elastic stiffness is greater).

If existing chevron frames have been unintentionally 
designed such that yielding would occur in the beam web, 
these analyses demonstrate the expected plastic mechanism.

CONCLUSIONS

A finite element (FE) model was developed to investigate 
the design procedure presented by Sabelli and Saxey (2021). 
The braces in the model had unlimited strength to force a 
beam-yielding mechanism to occur. A pushover analysis 
was performed to check if the Concentrated Stress Method 
(CSM) used by Sabelli and Saxey (2021) in their CSM 
example was accurate in predicting the beam shear yielding 
limit state. Here are the conclusions from the exercise:

•	 The CSM used by Sabelli and Saxey (2021) was 
reasonable for design. The FE model confirmed that the 
CSM example frame would not have experienced a beam 
yielding limit state under the design forces (maximum 
forces that could be delivered by the braces).

•	 While there was not a clear method for defining when the 
beam yielding limit state was reached in the FE model, 
an inflection point for the tangent stiffness suggested 

about 815  kips, which was 4% higher than the design 
force used in the CSM example.

•	 The method for estimating the z regions in the CSM 
example might be refined. A higher value for z was used 
in the CSM example than observed in the FE model.

•	 The method for assigning regions of the gusset to transmit 
shear in the CSM example might be refined. In the CSM 
example, shear was assumed to be transmitted along the 
entire length of the gusset, but the FE models indicate the 
z regions are not effective for shear transfer.

An additional FE model of an EBF was used for an aca-
demic exercise, comparing the post-yield plastic mechanism 
of a CBF (with beam yielding) with an EBF with the same 
beam. This discussion was outside the scope of Sabelli and 
Saxey (2021) but pertinent to the broader topic of local 
member shear demands. Conclusions were as follows:

•	 The CBF FE model developed the plastic mechanism 
discussed by Sabelli and Bolin (2022) and confirmed 
their assumption that the yielding region of the beam was 
shorter than the total gusset length.

•	 The shear yielding mechanism in the CBF beam (when 
braces had unlimited strength), was similar to an EBF 
shear link; however, the lateral forces to trigger the 
mechanism were much higher for the CBF. At the same 
inelastic story drift, the inelastic beam rotation and 
plastic strains were higher in the CBF with beam yielding 
than in the EBF with the same beam size.

	 (a)  Chevron	 (b)  EBF

Fig. 14.  Plastic strains in the chevron and EBF models at 0.004 rad inelastic story drift.
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