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Design by Advanced Elastic Analysis: An Investigation 
of Beam-Columns
YUNFEI WANG and RONALD D. ZIEMIAN

ABSTRACT

At the heart of the provisions for assessing structural stability within the AISC Specification for Structural Steel Buildings is the direct analy-
sis method. The fundamental concept for this method is that the more behavior is explicitly modeled within the analysis, the simpler it is to 
define the AISC Specification design requirements. In other words, the direct analysis method consists of calculating strength demands 
and available strengths according to a range of well-defined and fairly detailed analysis requirements. This paper begins with an overview 
of two logical extensions to AISC’s direct analysis method, both of which are now provided in AISC Specification Appendix 1, Design by 
Advanced Analysis. In establishing these approaches, many systems were investigated in previous research, and it was noted that systems 
with beam-columns subject to minor-axis bending may deserve additional attention. This paper presents a detailed study that investigates 
such members, as well as members subject to major-axis bending.

Keywords: direct analysis method, design by advanced analysis, design by advanced elastic analysis, beam-column, AISC, steel design.

INTRODUCTION

For the past 60 years, the effective length method (ELM) 
has been a widely employed stability design method 

(Ziemian, 2010). By scaling actual unbraced lengths to 
effective lengths when calculating the available strengths 
of compression members, the effective length K-factor is 
assumed to account for most factors known to impact the 
stability of structural systems, including geometric system 
imperfections; stiffness reduction due to inelasticity; and, 
to a much lesser degree, uncertainty in strength and stiff-
ness (AISC, 2016b). In 2005, design by the direct analysis 
method (DM) first appeared in the AISC Specification for 
Structural Steel Buildings (AISC, 2005), hereafter referred 
to as the AISC Specification. In DM, the available strengths 
of compression members are based simply on the unbraced 
length (K  = 1), as long as system imperfections (but not 
member imperfections) and stiffness reduction due to 
inelasticity are represented in the structural analysis. Since 
then, many in the structural design profession have moved 
from employing ELM to DM. As a result, DM was relo-
cated in the 2010 AISC Specification (AISC, 2010) from 
Appendix 7 to Chapter C, while ELM was relocated from 
Chapter C to Appendix 7.

Both design methods rely on establishing the unbraced 
lengths of compression members, which in some cases may 
be difficult, if not impossible, to define. Examples include, 
but are not limited to, arches, tree columns, and Vierend-
eel trusses. In response to this predicament, AISC intro-
duced the design by advanced elastic analysis method that 
appears in the 2016 AISC Specification in Appendix 1. In 
addition to the analysis modeling requirements of DM, the 
method further requires the direct modeling of member 
imperfections and, therefore the method is often repre-
sented by the acronym DMMI. In applying this approach, 
engineers can avoid the complexities of defining unbraced 
lengths, thereby being permitted to compute the nominal 
available strengths of compression members as their axial 
cross-sectional strengths. This paper reports on a study to 
complement previous studies on systems to evaluate the per-
formance of DMMI (Nwe Nwe, 2014; Giesen-Loo, 2016), 
especially with an eye toward members that are subject 
to the combination of compression and minor-axis bend-
ing (Wang, 2018; Wang and Ziemian, 2019). Using AISC’s 
design by advanced inelastic analysis method, which is 
based on employing a rigorous geometric and material non-
linear analysis with imperfections (GMNIA), the accuracy 
of DMMI is assessed and further compared with the more 
traditional ELM and DM design methods. Additionally, the 
significances of thermal residual stresses, which are a con-
sequence of uneven cooling of rolled cross sections, and 
the axis of bending (minor versus major) for W- and HSS 
shapes are also explored.

The paper begins by providing an overview of AISC’s 
ELM, DM, DMMI, and GMNIA methods, along with 
details of the analysis method and the interaction equation 
employed in each. Results of the study are then presented 
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primarily in tabular format, which are followed by discus-
sions of the effects of residual stresses, axis of bending, and 
design method employed.

OVERVIEW OF DESIGN METHODS

In this study, the ends of simply supported columns of 
various slenderness ratios are subjected to a wide range of 
combinations of applied axial force and bending moments 
that are of equal magnitude and opposite direction (in the 
absence of axial force, such moments would produce a uni-
form moment distribution). In all cases, the members are 
assumed to be fully braced out-of-the-plane of bending. To 
assess the LRFD strength of beam-columns based on an 
elastic analysis, the following interaction equations are pro-
vided in the AISC Specification (from Specification Equa-
tions H1-1a and H1-1b):
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where ϕ = 0.90, Pu is the required axial strength, Mu is the 
required flexural strength, Pn is the nominal available axial 
strength, and Mn is the nominal available flexural strength 
about either the major x- or minor y-axis. The analysis for 
the required axial strength, Pu, and flexural strength, Mu, 
should consider second-order (geometric nonlinear) effects.

The following design methods, including ELM, DM, and 
DMMI, employ Equations 1a and 1b with terms defined by 
that specific method. In all cases, the controlling combina-
tions of axial force and bending moment are determined for 
each of these elastic design methods by iteratively solving 
for the maximum value of Mu for a given value of Pu that 
will satisfy Equation 1. For reference, Figure 1 shows the 
deflected shape of the beam-column. Equilibrium on the 
deformed shape is given by:

 Mu x,P( () )+ Pv x +M = 0 (2)

After substituting the moment-curvature relationship, 
Mu x,P( ) = EId 2v dx2, Equation 2 becomes the governing 
differential equation:

 
EI
d 2v

dx2 + −= M( )Pv x
 

(3)

where v(x) is the total lateral deflection as a function of span 

length location x and equals the sum of an assumed geomet-

ric imperfection v δ0 x( ) = 0 sin
xπ
L

 and deflection vPM(x) due 

to the applied combination of P and M.

Effective Length Method (ELM)

In computing the nominal axial strength, Pn, from the 
AISC column curve, the effective length factor of a sim-
ply supported beam-column is K = 1. In determining the 
required flexural strength, Mu, equilibrium equations are 

 (a) Deflection diagram (b) Free-body diagram at mid-height

Fig. 1. Deflected shape of beam-column with second-order effects due to applied loading and geometric imperfection.
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defined on the deflected shape to account for second-order 
effects. For a structural analysis associated with ELM, the 
beam-column is assumed geometrically straight, v0(x)  = 
0, prior to any applied loading (the AISC column curve 
accounts for member out-of-straightness). As a result, the 
P-δ effect in this method need only account for the interac-
tion between the applied axial load and bending moments 
and, thereby, is not influenced by the presence of an initial 
member imperfection.

In establishing the design adequacy of this member, 
the required moment, Mu(x,P), is a maximum at midspan 
because vPM(x) takes on a maximum value when x = L/2. 
Thus, the interaction equation only needs to be checked 
at midspan, where the required strengths (terms in the 
numerators of Equation 1) are at a maximum. For an elastic 
analysis of a simply supported, originally perfectly straight, 
and prismatic member, the required flexural strength, Mu, 
at midspan, which includes moment amplification due to 
second-order effects, can be calculated as a function of the 
applied force P and moment M by the following “exact” 
equation (McGuire et al., 2000):
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where Pe is the Euler buckling strength of the beam-column,  
and noting that shear deformation is neglected.

With Pu = P at midspan, substitution of these terms for 
Pu and Mu= Mumid  in Equation 1a results in an interaction 
equation for ELM defined by:
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(5)

in which, specific to ELM,

Pn = Fcr Ag

Pe =
2Eπ I

L2

Mn = FyZ

where Fcr is the critical buckling stress as defined by the 
AISC column curve, with K = 1 for the simply supported 
end conditions being investigated in this study; Ag is the 
gross area of the cross-section; E is the elastic modulus of 
the material; I is the moment of inertia; L is the unsupported 
length of the beam-column; Fy is the material yield stress; 
and Z is the plastic section modulus. In computing Mn, it is 
important to note that only members with compact sections 
are investigated, and any members subject to major-axis 

bending are assumed fully braced out-of-plane.

Direct Analysis Method (DM)

Although DM permits the use of the unbraced length (K = 1),  
this provides no advantage over ELM for the specific end 
support conditions of the single beam-column investigated 
in this study. In fact, DM is somewhat penalized in this case 
by its required use of a stiffness reduction factor within the 
structural analysis. Although the equilibrium analysis is of 
the same form as that given for ELM, the Euler buckling 
strength, Pe, used in the analysis of the member is modified 
to represent the inelastic buckling strength of the member. 
As a result, the interaction equation (Equation 1a) for DM 
can be written as Equation 5, except Pe is defined as the 
inelastic buckling strength. Hence, Pn = FcrAg, defined by 
the AISC column curve with no 0.8τb stiffness reduction on 
E; Pe = π2(0.8τbE)I/L2, which amplifies the moment; and 
Mn = FyZ. The 0.8τb stiffness reduction is not used in com-
puting Fcr because the AISC column curve already has a 
stiffness reduction included. According to the AISC Speci-
fication (2016b) and given that all sections are compact, τb 
is calculated as:
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where Py = FyAg.

Design by Advanced Elastic Analysis Method (DMMI)

As described earlier, DMMI is an alternative design 
method that may be particularly useful for more complex 
structures in which the unbraced length is not discernible. 
By directly modeling member out-of-straightness and rep-
resenting potential inelasticity through the use of the stiff-
ness reduction strategy employed in DM, the nominal axial 
strength, Pn, of the member may be taken as its cross-sec-
tion strength. The resulting increase in axial strength, Pn, 
that appears in the interaction equation is compensated for 
by a larger required flexural strength, Mu, which is obtained 
from an advanced elastic structural analysis that accounts 
for initial system and member imperfections, second-order 
(geometric nonlinear) effects, and stiffness reduction due 
to inelasticity.

In contrast to the preceding analysis for determining 
strengths for ELM and DM, the analysis for DMMI must also 
include the direct modeling of member out-of-straightness.  
In this study, the shape of the initial imperfection is 
assumed a sine wave with an amplitude at midspan of δ0 = 
L/1000 per the AISC Code of Standard Practice for Steel 
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out-of-straightness and residual stresses are directly mod-
eled. In both analysis programs, the applied axial force P 
and bending moments M are applied simultaneously, and 
an incremental-iterative arc-length solution scheme is 
employed until a limit point is achieved. Because of the 
relatively high accuracy of these analyses, the following 
error analyses of the preceding elastic design methods are 
based on the combinations of P and M that this inelastic 
design method would permit and still satisfy the provisions 
of AISC Specification Appendix 1.

It is well known that partial yielding of the cross sec-
tion can have a significant effect on the stability of beam-
columns. In cases where member out-of-straightness is not 
removed by processes, such as rotary straightening, this 
partial yielding can be accentuated by the presence of resid-
ual stresses. On the other hand, the use of such straighten-
ing processes can be shown to alleviate or even eliminate 
the presence of residual stresses (Ge and Yura, 2019). As a 
result, ultimate strength combinations were determined for 
cases in which residual stresses are and are not included 
in the analysis of elastic-perfectly plastic material mod-
els. When residual stresses are taken into account, the 
Galambos and Ketter (1959) residual stress distribution 
was employed for the W-shapes with a maximum compres-
sive stress at the flange tips of 0.3Fy. For the HSS-shapes, 
two residual stress patterns were considered. The Mathur 
(2011) residual stress pattern was employed to represent the 
highest expected residual stress pattern, with a maximum 
compressive strength of 20 ksi at the center of each face. A 
much lower and perhaps more realistic European Conven-
tion for Constructional Steelwork (ECCS, 1984) residual 
stress pattern with 0.2Fy at the center of each face was also 
studied. It is noted that the use of the Mathur pattern is con-
sidered conservative because it was developed for welded 
box columns. Additionally, the material elastic modulus, E, 
and yield stress, Fy, in the FE++ and STRAND7 analyses 
are reduced by a factor of 0.90, as required by AISC Speci-
fication Appendix 1.

NORMALIZED P-M INTERACTION CURVE 
AND ERROR CALCULATIONS

To compare the accuracy of each of the design methods, 
with special attention on DMMI, normalized P-M interac-
tion curves of ELM, DM, DMMI, and GMNIA are first 
plotted. Data points are obtained by determining the maxi-
mum combination of axial load P and bending moments M 
that can be applied at the member ends such that the strength 
requirements of the design method would just be satis-
fied—that is, interaction Equation 1 equals 1.0. Calculation 
of error values in the curves are then computed using the 
GMNIA curve as a basis. To further allow the errors to be 
comparable for the wide range of member slenderness ratios 

Buildings and Bridges (AISC, 2016a). As such, the second-
order P-δ effect needs to include both the impact of the 
applied axial force and bending moment as well as the ini-
tial imperfection.

The solution to the governing differential equation, 
Equation 3, has a solution at midspan that is given by:
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With v(L/2), equilibrium on the deformed shape at midspan 
will result in a required moment strength of:
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This solution is more complex than Equation  4 because 
the initial imperfection is not zero and contributes to the 
second-order effects.

Similar to DM, a stiffness reduction factor of 0.8τb 
should be applied to all the members of the system, which 
in this study means that all EI terms (within Pe) in the previ-
ous equations should be 0.8τbEI. With values of Pu = P and 
Mu= Mumid  as defined previously, the interaction equation 
(Equation 1a) is expressed for DMMI as:
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in which, specific to DMMI, v(L/2) is determined by Equa-
tion 7 with δ0 = L/1000 and Pe and τb as defined for DM, 
Pn = FyAg, and Mn = FyZ.

Design by Advanced Inelastic Analysis Method 
(GMNIA)

Since 2010, the design by advanced inelastic analysis 
method has been provided in AISC Specification Appen-
dix 1. Given that this design method is based on a geo-
metric and materially nonlinear analysis that includes 
initial imperfections, it will be referenced by the acronym 
GMNIA. The second-order inelastic analysis routines used 
in this study are included in the finite element analysis soft-
ware FE++ (Alemdar, 2001) for W-shapes and STRAND7 
for HSS, where distributed plasticity models are employed. 
In FE++, each beam-column is modeled by eight line ele-
ments, thereby permitting a sine wave member out-of-
straightness of δ0 = L/1000 to be directly modeled in the 
analysis. Residual stresses are represented by pre-stressing 
(compression or tension) the fibers that define the cross 
section. In STRAND7, however, shell elements are used to 
model the beam-columns, and similarly for FE++, member 



ENGINEERING JOURNAL / SECOND QUARTER / 2021 / 127

which the elastic design method (ELM, DM, or DMMI) is 
unconservative when compared to a design strength deter-
mined by GMNIA.

The legend within the rightward radial error graph [Fig-
ure  2(b)] contains information important to this study. 
Working from the top downward, rows within this legend 
represent results for the ELM, DM, and DMMI methods, 
respectively. The first two numbers in each row represent 
the error of each design method with an angle, θ, that cor-
responds to where the DMMI error is at its maximum. The 
second two numbers correspond to the maximum error of 
each design method and the angle, θ, where this maximum 
occurs.

CROSS SECTIONS INVESTIGATED

As indicated in Table  1, this study investigated 65 wide-
flange shapes of ASTM A992 steel (E = 29,000 ksi and 
Fy  = 50 ksi) and 4 HSS-shapes of ASTM A500 steel  
(E = 29,000 ksi and Fy = 46 ksi). These shapes are all of the 
compact sections that appear in the column design portion 
of the AISC Steel Construction Manual (AISC, 2017), and, 
for the most part, the wide-flange shapes investigated have 
depth-to-width ratios less than 1.5.

RESULTS

Interaction curves and plots of percent radial errors that cor-
respond to the four different design methods (ELM, DM, 
DMMI, and GMNIA) were prepared (see, e.g., Figure 2) for 

investigated, all axial forces and moments were normalized 
by the maximum GMNIA values, with PGMNIA being the 
maximum axial strength when the applied moment is M = 0  
and with MGMNIA being the maximum moment strength 
when the applied axial force is P = 0 (which would equal 
0.9FyZ for all members in this study). As an example, Fig-
ure 2 shows the normalized P-M interaction curves and a 
plot of the radial errors for a W12×120  member with an 
L/r = 90 that is subjected to minor-axis bending and with 
residual stresses included. Similar results for other L/r 
ratios for this W12×120 are provided in Appendix 1.

Using radial lines at 10° increments measured clockwise 
from the normalized P-axis to the M-axis, the intersections 
of the radial lines and the P-M curves are determined. It 
is noted that values at intersection points that lay between 
computed data points are obtained from a parabolic inter-
polation between the adjacent three data points. The per-
cent errors of the design methods are then established by 
comparing their radial R-distances from the origin to the 
interaction curves according to:

 
Percent radial error = ×R RXXX − GMNIA

RGMNIA
100%

 
(10)

where RXXX is the radial distance of the P-M curves for 
the elastic design methods (ELM, DM, and DMMI), and 
RGMNIA is the radial distance to the GMNIA P-M curve. 
As a result, error plots at different radial angles, as shown 
in Figure 2(b), represent a comprehensive range of differ-
ent combinations of applied axial force and moment. Points 
with positive percent errors are indicative of situations in 

 (a) Normalized P-M interaction (b) Plots of percent radial errors 
 curves for the four design methods

Fig. 2. For a W12×120 member with an L/r = 90 subject to minor-axis bending and with residual stresses included.
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all 65 W-shapes and 4 HSS-shapes over a range of mem-
ber slenderness L/r ratios of 30, 60, 90, 120, and 150, with 
r = I A. With four cases, including minor- or major-axis 
bending for W-shapes and with or without residual stresses, 
this study evaluates 1,340 conditions, which are represented 
by a total of 58,960 analysis data points.

Wide-Flange Shapes

A summary of the results for all W-shapes is provided in 
Table 2, in which the maximum, average, and median of all 
of the individual member maximum percent radial errors 
are reported. In general, the percent radial errors reported 
for the three design methods are fairly similar. The largest 
percent radial errors are always for the DMMI method, and 
the smallest percent radial errors are for the DM method. 
Given that the ELM and DM methods are essentially the 
same, except that DM requires the analysis to include the 
stiffness reduction, 0.8τb, it is expected (and confirmed 
in Table  2) that DM will be more conservative (smaller 
radial errors) than ELM for all slenderness ratios. It is fur-
ther noted that larger unconservative errors for DMMI for 
sections with residual stresses consistently occur when the 
applied loading combination is predominately axial force 
(θ = 10°); in contrast, the larger unconservative errors for 
ELM and DM occur when the loading is primarily bending 
(θ = 80°).

Hollow Structural Sections

The HSS-shape study does not include the parameter of 
bending axis because only square shapes are investigated. 
However, the effect of residual stress pattern is still investi-
gated. A summary of the results for all HSS-sections is pro-
vided in Table 3. With the Mathur residual stress pattern, 
DMMI gives the largest percent radial errors among the 
three elastic design methods, a trend found consistent with 

W-shapes results. With the ECCS residual stress pattern, 
however, ELM gives the largest errors, while the errors 
of DMMI and DM are fairly close. It is worth noting that 
because the HSS shapes are modeled as square tubes with-
out the curved corner geometry in STRAND7, the radius 
of gyration r of the STRAND7 model is slightly different 
from the AISC value, and consequently, the slenderness 
ratio L/r of HSS sections studied are close, but not exactly 
equal to 30, 60, 90, 120, and 150.

DISCUSSION

As would be expected, not including a residual stress distri-
bution increases the design capacities of the beam-columns 
per the GMNIA design method. As a consequence, and 
given that the GMNIA results form the basis for the error 
analysis, the unconservative percent radial errors for all 
three of the elastic design methods (ELM, DM, and DMMI) 
are significantly reduced. A representative example of this 
is shown in Figure 3, where the performance of the DMMI 
design method is significantly improved with much better 
agreement (smaller radial errors) with GMNIA.

This increase in accuracy, however, is relatively pro-
nounced where θ is small, which is a condition when the 
axial load is more significant than the bending moment, 
and is less obvious when θ is large, which is a combination 
of a larger bending moment and a smaller axial force. Of 
course, this is expected because it is well known that such 
residual stresses rarely affect the strength of a member sub-
jected to a loading combination that is predominately bend-
ing (again noting that all members in this study are either 
subject to minor-axis bending or laterally braced when sub-
ject to major-axis flexure). The trend observed in Figure 3 is 
consistent for all shapes and design methods investigated in 
this study, regardless of the cross-sectional shapes, slender-
ness ratio, or the axis of bending investigated. In general, 

Table 1. Sections Studied

W14

W14×730 W14×665 W14×605 W14×550 W14×500 W14×455 W14×426

W14×398 W14×370 W14×342 W14×311 W14×282 W14×257 W14×233

W14×211 W14×193 W14×176 W14×159 W14×145 W14×132 W14×120

W14×109 W14×82 W14×74 W14×68 W14×61 W14×53 W14×48

W12

W12×336 W12×305 W12×279 W12×252 W12×230 W12×210 W12×190

W12×170 W12×152 W12×136 W12×120 W12×106 W12×96 W12×87

W12×79 W12×72 W12×58 W12×53 W12×50 W12×45 W12×40

W10
W10×112 W10×100 W10×88 W10×77 W10×68 W10×60 W10×54

W10×49 W10×45 W10×39 W10×33

W8 W8×67 W8×58 W8×48 W8×40 W8×35

HSS HSS12×12×12 HSS10×10×2 HSS8×8×2 HSS6×6×2
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Table 2. Summary of Percent Radial Errors of W-Shapes Studied for Minor- and  
Major-Axis Bending with and without Residual Stresses Included in the GMNIA Design

Minor-Axis, 
Residual Stresses

Minor-Axis, 
No Residual Stresses

Major-Axis, 
Residual Stresses

Major-Axis, 
No Residual Stresses

L/r = 30 DMMI
Max = 3.0%
Ave = 2.2%
Median = 2.2%

Max = 1.8%
Ave = 0.5%
Median = 0.4%

Max = 7.0%
Ave = 6.5%
Median = 6.6%

Max = 5.9%
Ave = 5.0%
Median = 5.0%

ELM
Max = 3.2%
Ave = 2.1%
Median = 2.0%

Max= 2.5%
Ave= 1.1%
Median= 1.1%

Max = 6.9%
Ave = 6.1%
Median = 6.2%

Max = 5.8%
Ave = 4.7%
Median = 4.6%

DM
Max = 2.6%
Ave = 1.5%
Median = 1.5%

Max = 1.9%
Ave = 0.6%
Median = 0.5%

Max = 6.0%
Ave = 5.1%
Median = 5.2%

Max = 4.9%
Ave = 3.8%
Median = 3.6%

L/r = 60 DMMI
Max = 14.8%
Ave = 13.7%
Median = 13.9%

Max = 7.3%
Ave = 6.1%
Median = 6.1%

Max = 10.5%
Ave = 10.0%
Median = 10.0%

Max = 7.5%
Ave = 6.7%
Median = 6.6%

ELM
Max = 9.7%
Ave = 8.4%
Median = 8.4%

Max = 8.8%
Ave = 7.5%
Median = 7.6%

Max = 9.2%
Ave = 8.5%
Median = 8.6%

Max = 6.1%
Ave = 5.2%
Median = 5.3%

DM
Max = 8.2%
Ave = 7.3%
Median = 7.3%

Max = 6.7%
Ave = 5.5%
Median = 5.5%

Max = 6.4%
Ave = 5.7%
Median = 5.8%

Max = 3.6%
Ave = 2.9%
Median = 3.0%

L/r = 90 DMMI
Max = 15.8%
Ave = 14.8%
Median = 14.8%

Max = 9.7%
Ave = 8.2%
Median = 8.2%

Max = 10.0%
Ave = 9.2%
Median = 9.2%

Max = 5.4%
Ave = 4.7%
Median = 4.7%

ELM
Max = 13.0%
Ave = 11.1%
Median = 11.1%

Max = 11.3%
Ave = 9.8%
Median = 9.8%

Max = 7.6%
Ave = 6.9%
Median = 6.9%

Max = 4.5%
Ave = 3.5%
Median = 3.5%

DM
Max = 11.2%
Ave = 9.6%
Median = 9.6%

Max = 8.2%
Ave = 6.7%
Median = 6.7%

Max = 3.9%
Ave = 3.2%
Median = 3.3%

Max = 1.5%
Ave = 0.6%
Median = 0.6%

L/r = 120 DMMI
Max = 15.3 %
Ave = 14.2%
Median = 14.1%

Max = 11.0%
Ave = 9.6%
Median = 9.6%

Max = 7.1%
Ave =6.2%
Median = 6.2%

Max = 2.9%
Ave = 2.2%
Median = 2.2%

ELM
Max = 12.7%
Ave = 11.3%
Median = 11.3%

Max = 11.4%
Ave = 9.9%
Median = 9.9%

Max = 5.8%
Ave = 4.6%
Median = 4.6%

Max = 2.7%
Ave = 1.8%
Median = 1.8%

DM*
Max = 9.5%
Ave = 8.0%
Median = 8.0%

Max = 8.1%
Ave = 6.6%
Median = 6.6%

Max = 2.6%
Ave = 1.5%
Median = 1.4%

Max = n/a*
Ave = n/a
Median = n/a

L/r = 150 DMMI
Max = 14.0%
Ave = 12.6%
Median = 12.6%

Max = 11.8%
Ave = 10.4%
Median = 10.4%

Max = 5.6%
Ave = 4.8%
Median = 4.7%

Max = 2.1%
Ave = 1.2%
Median = 1.2%

ELM
Max = 12.4%
Ave = 10.9%
Median = 10.9%

Max = 11.2%
Ave = 9.8%
Median = 9.8%

Max = 4.4%
Ave = 3.4%
Median = 3.4%

Max = 1.4%
Ave = 0.5%
Median = 0.5%

DM*
Max = 9.0%
Ave = 7.6%
Median = 7.6%

Max = 7.8%
Ave = 6.4%
Median = 6.4%

Max = 1.1%
Ave = 0.2%
Median = 0.1%

Max = n/a
Ave = n/a
Median = n/a

Note: No unconservative errors are observed as indicated by n/a
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Table 3. Summary of Percent Radial Errors of HSS Sections Studied  
with High and Low Residual Stresses Included in the GMNIA Design

High Residual Stress (Mathur) Low Residual Stress (ECCS)

L/r = 30

DMMI
Max = 1.7%
Ave = 1.4%
Median = 1.4%

Max = 1.3%
Ave = 0.7%
Median = 1.0%

ELM
Max = 1.6%
Ave = 1.1%
Median = 1.1%

Max = 1.3%
Ave = 0.8%
Median = 1.0%

DM
Max = 1.6%
Ave = 1.1%
Median = 1.1%

Max = 1.3%
Ave = 0.7%
Median = 1.0%

L/r = 60

DMMI
Max = 10.0%
Ave = 9.6%
Median = 9.5%

Max = 2.4%
Ave = 1.6%
Median = 1.8%

ELM
Max = 5.4%
Ave = 4.3%
Median = 4.1%

Max = 3.1%
Ave = 2.6%
Median = 2.4%

DM
Max = 3.8%
Ave = 3.3%
Median = 3.3%

Max = 2.4%
Ave = 1.6%
Median = 1.8%

L/r = 90

DMMI
Max = 17.5%
Ave = 16.2%
Median = 16.2%

Max = 3.5%
Ave = 2.9%
Median = 2.9%

ELM
Max = 14.6%
Ave = 13.2%
Median = 13.1%

Max = 4.8%
Ave = 4.3%
Median = 4.1%

DM
Max = 14.6%
Ave = 13.2%
Median = 13.1%

Max = 3.5%
Ave = 2.9%
Median = 2.9%

L/r = 120

DMMI
Max = 14.8%
Ave = 14.1%
Median = 14.3%

Max = 5.7%
Ave = 3.7%
Median = 3.5%

ELM
Max = 13.6%
Ave = 11.8%
Median = 11.8%

Max = 5.7%
Ave = 5.2%
Median = 5.1%

DM
Max = 13.6%
Ave = 11.6%
Median = 11.8%

Max = 5.7%
Ave = 3.7%
Median = 3.5%

L/r = 150

DMMI
Max = 17.0%
Ave = 15.9%
Median = 15.7%

Max = 6.3%
Ave = 4.0%
Median = 4.1%

ELM
Max = 11.7%
Ave = 11.4%
Median = 11.4%

Max = 5.7%
Ave = 5.6%
Median = 5.7%

DM
Max = 8.3%
Ave = 8.0%
Median = 8.0%

Max = 5.7%
Ave = 4.0%
Median = 4.1%
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the reduction in DMMI errors for sections without resid-
ual stresses is largest for W-shapes when the slenderness 
ratio is L/r = 60 for minor-axis bending and L/r = 90 for 
major-axis bending. In moving from high to low residual 
stresses, the reduction is largest when slenderness ratio of 
HSS-sections is L/r = 90. The change in error is the smallest 
at the extreme slenderness ratios investigated, including the 
least-slender (L/r = 30) and most-slender (L/r = 150) mem-
bers for W-shapes, and when the beam-column is stocky  
(L/r = 30) for HSS-sections. It is further noted that the ELM 
and DM design methods can be significantly more conser-
vative when residual stresses are not present.

From the W-shape results in this study, it can be observed 
that with the exception of more-stocky members (L/r = 30), 
the percent radial errors for all three design methods, espe-
cially DMMI, are reduced when members are subject to 
major-axis bending instead of minor-axis bending.

As further shown in Tables  2 and 3, all three elastic 
design methods will produce some unconservative errors 
when compared with GMNIA-based design in most of the 
cases studied. For the reasons given earlier, DM will always 
provide smaller percent radial errors when compared with 
ELM. It is important to note that this applies only for 
the simply supported member explored in this study—
for systems comprised of members with effective length  
K-factors exceeding 1.0, this will not necessarily be the case  

(Martinez-Garcia and Ziemian, 2006).
The results for DMMI and ELM are not significantly dif-

ferent, with the largest differences occurring for W-shape 
members subject to minor-axis bending in the low- to mid-
slenderness (L/r = 60 to 90), and for HSS-section member 
with L/r = 60.

SUMMARY AND CONCLUSION

This study evaluates three elastic design methods (ELM, 
DM, and DMMI) appearing in the 2016 AISC Specification 
by making comparisons with a fourth method (GMNIA) 
that is often considered the most “exact” because all desta-
bilizing effects are explicitly modeled in the analysis. This 
latter method, design by advanced inelastic analysis, also 
appears in the AISC Specification. With 1,340 conditions 
studied that required a total of 58,960 analyses, simply sup-
ported beam-columns comprised of a fairly wide range of 
column W- and HSS- sections and slenderness ratios are 
investigated for conditions of minor- or major-axis flexure 
that include or exclude the presence of residual stresses. 
In all cases, members are assumed to be fully braced 
out-of-plane.

In general, all three elastic design methods provide 
fairly similar results. AISC’s relatively new design by 
advanced elastic analysis method, termed DMMI in this 

 (a) Residual stresses included (b) Residual stresses excluded 
 in the GMNIA-based design in the GMNIA-based design

Fig. 3. Percent radial errors for a member of an L/r = 60 subjected to minor-axis bending comprised of a W12×120 section.
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study, consistently indicated more strength (1% to 5%) than 
AISC’s effective length method. Conditions of major-axis 
bending for W-shapes significantly improved the perfor-
mance of all three elastic design methods. Regardless of the 
axis of bending, results are always improved when resid-
ual stresses are lowered or eliminated, a condition that is 
quite common for HSS-shapes and often the consequence 
of rotary straightening W-shapes during the rolling pro-
cess. Knowing that ELM has been an established design 
method that has performed well in the United States since 
the early 1960s, it is the authors’ opinion that the uncon-
servative errors for all three elastic design methods may 
not be reason for significant concern. Based on the many 
systems previously investigated by the second author in the 
development of AISC’s design by advanced elastic analysis 
method (DMMI), the study presented in this paper has pro-
vided some well-served deserved investigations on beam-
columns subject to minor-axis bending.

Noting that AISC’s design by advanced elastic analysis 
method currently only permits that the axial strength Pn can 
be taken as the cross-section strength Py, additional studies 
are needed to permit this approach to move to a full cross-
section-based design method—in other words, move from 
requiring the flexural strength Mn to account for member 
length effects, such as lateral-torsional buckling, to being 
taken as cross-section strength Mp. Of course, such a revi-
sion will require that engineers have access to commercially 
available analysis software that directly models nonuniform 
torsion, and thereby permits the analysis to account for the 
rapid increase in moments as lateral-torsional and flexural-
torsional buckling modes of failure are approached.
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APPENDIX A

Plots of Interaction Curves and Percent Radial Error

As a complement to Figure  2, the remaining normalized 
P-M interaction curves and corresponding plots of percent 
radial errors that were studied for the specific case of a 
W12×120 member that includes residual stresses and sub-
jected to minor-axis bending are provided in Figures A-1 
through A-4.

APPENDIX B

Data for Plots of Percent Radial Errors

Tables B-1 through B-5 provide numerical values for the 
data points appearing in the percent radial error plots given 
in Figure 2 and Appendix A, and for similar plots for the 
presented example of a W12×120. These percent radial 
errors represent the minor- and major-axis bending cases 
for when residual stresses are either included or excluded. 
A positive error value indicates nonconservative error when 
compared to GMNIA results, and likewise, a negative error 
represents conservative error.
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Fig. A-1. L/r = 30.

Fig. A-2. L/r = 60.
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Fig. A-3. L/r = 120.

Fig. A-4. L/r = 150.
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Table B-1. L//r == 30 (values are percent radial errors)

Minor-Axis Bending
with Residual Stresses

Minor-Axis Bending
without Residual Stresses

Major-Axis Bending
with Residual Stresses

Major-Axis Bending
without Residual Stresses

θ DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM

0° 2.1 0.6 0.6 −6.0 −7.4 −7.4 2.1 −0.2 −0.2 −0.8 −3.1 −3.1

10° −2.2 −2.8 −4.1 −6.7 −7.2 −8.4 3.8 2.6 1.3 −0.2 −1.4 −2.6

20° −5.3 −5.9 −7.0 −6.9 −7.6 −8.6 5.1 3.8 2.7 2.4 1.2 0.1

30° −8.2 −8.8 −9.7 −9.6 −10.2 −11.1 5.8 4.6 3.6 3.2 2.1 1.1

40° −10.4 −10.8 −11.7 −12.1 −12.5 −13.4 6.2 5.4 4.3 3.7 2.9 1.8

50° −10.6 −10.8 −11.7 −12.9 −13.2 −14.1 6.5 5.9 4.8 4.5 3.9 2.9

60° −8.5 −8.5 −9.4 −11.1 −11.2 −12.1 6.3 6.0 5.0 5.0 4.6 3.6

70° −3.5 −3.4 −4.2 −6.0 −5.9 −6.7 5.9 5.8 5.0 4.6 4.5 3.6

80° 1.1 1.8 1.2 0.4 1.1 0.4 2.9 3.4 2.8 2.2 2.8 2.2

90° 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B-2. L//r == 60 (values are percent radial errors)

Minor-Axis Bending
with Residual Stresses

Minor-Axis Bending
without Residual Stresses

Major-Axis Bending
with Residual Stresses

Major-Axis Bending
without Residual Stresses

θ DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM

0° 12.3 7.1 7.1 −4.7 −9.1 −9.1 3.8 −2.6 −2.6 −6.6 −12.4 −12.4

10° 13.7 8.0 4.6 1.0 −4.2 −7.0 6.8 0.3 −2.7 0.4 −5.8 −8.5

20° 10.9 6.3 2.6 1.1 −3.4 −6.7 8.1 2.5 −1.0 −0.3 −5.6 −8.8

30° 8.0 4.5 0.8 −0.2 −3.8 −7.2 8.5 4.0 0.3 3.1 −1.3 −4.9

40° 6.6 3.8 0.2 −0.7 −3.6 −7.0 9.0 5.3 1.6 4.8 1.0 −2.5

50° 6.1 3.8 0.4 −0.4 −2.8 −6.0 9.8 6.8 3.3 5.2 2.2 −1.3

60° 6.5 4.7 1.7 1.2 −0.7 −3.7 10.5 8.1 4.9 6.3 3.8 0.6

70° 7.4 7.1 4.5 4.2 3.2 0.5 9.5 8.5 5.7 7.0 5.5 2.7

80° 6.9 8.3 6.4 6.3 7.7 5.7 5.1 6.3 4.3 3.7 4.9 2.9

90° 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B-3. L//r == 90 (values are percent radial errors)

Minor-Axis Bending
with Residual Stresses

Minor-Axis Bending
without Residual Stresses

Major-Axis Bending
with Residual Stresses

Major-Axis Bending
without Residual Stresses

θ DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM

0° 9.7 10.5 10.5 −2.7 −2.0 −2.0 0.4 −1.0 −1.0 −5.7 −7.0 −7.0

10° 14.7 9.1 2.2 2.2 −2.8 −8.8 4.1 −2.1 −8.1 −0.6 −6.5 −12.3

20° 14.9 8.9 2.1 3.3 −2.1 −8.2 5.4 −0.9 −7.1 0.3 −5.8 −11.6

30° 13.9 8.2 1.8 3.7 −1.7 −7.4 6.6 0.5 −5.4 2.4 −3.6 −9.4

40° 13.2 7.8 1.9 4.2 −0.9 −6.5 8.0 2.1 −3.6 3.9 −1.8 −7.5

50° 12.8 8.0 2.5 5.1 0.4 −4.8 9.2 3.9 −1.5 4.3 −0.9 −6.1

60° 12.1 9.0 4.2 6.5 2.9 −1.8 9.4 5.4 0.5 4.8 0.7 −4.1

70° 11.0 11.0 6.9 7.6 6.7 2.5 8.0 6.9 2.7 4.4 2.8 −1.3

80° 9.5 10.8 8.0 8.2 9.7 6.7 4.8 6.1 3.2 2.2 3.5 0.6

90° 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table B-4. L//r == 120 (values are percent radial errors)

Minor-Axis Bending
with Residual Stresses

Minor-Axis Bending
without Residual Stresses

Major-Axis Bending
with Residual Stresses

Major-Axis Bending
without Residual Stresses

θ DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM

0° −0.3 5.5 5.5 −5.6 −0.1 −0.1 −5.7 −1.4 −1.4 −7.1 −2.9 −2.9

10° 11.1 3.0 −4.9 0.9 −6.3 −13.4 1.0 −7.0 −14.0 −1.1 −9.0 −15.8

20° 13.8 3.9 −3.5 3.2 −5.7 −12.5 3.6 −6.0 −12.8 0.4 −8.8 −15.4

30° 14.2 4.2 −2.8 4.9 −4.5 −10.8 5.4 −4.6 −10.9 1.2 −8.4 −14.5

40° 13.7 4.8 −1.6 5.8 −2.7 −8.7 6.0 −3.0 −9.0 1.5 −7.2 −13.0

50° 13.1 6.0 0.0 6.7 −0.2 −5.9 6.3 −1.1 −6.8 2.3 −4.9 −10.4

60° 12.6 7.8 2.5 7.7 2.8 −2.4 6.2 0.9 −4.2 2.3 −2.9 −7.8

70° 12.0 10.4 5.9 8.7 6.8 2.3 5.6 3.4 −1.0 2.1 −0.2 −4.5

80° 10.8 11.1 7.9 9.4 9.8 6.5 4.2 4.4 1.2 1.6 1.9 −1.2

90° 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B-5. L//r == 150 (values are percent radial errors)

Minor-Axis Bending
with Residual Stresses

Minor-Axis Bending
without Residual Stresses

Major-Axis Bending
with Residual Stresses

Major-Axis Bending
without Residual Stresses

θ DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM

0° −3.0 0.5 0.5 −6.5 −3.2 −3.2 −7.4 −4.9 −4.9 −9.4 −7.0 −7.0

10° 8.6 −2.4 −9.8 −0.2 −10.2 −17.0 −0.8 −11.3 −18.0 −4.8 −14.9 −21.2

20° 11.6 −0.8 −8.0 2.4 −9.0 −15.6 1.6 −10.3 −16.8 −1.9 −13.3 −19.6

30° 12.5 0.3 −6.4 4.2 −7.2 −13.4 2.8 −8.9 −15.0 0.0 −11.4 −17.3

40° 12.7 1.6 −4.7 5.7 −4.8 −10.8 3.6 −7.1 −13.0 0.7 −9.8 −15.5

50° 12.6 3.3 −2.6 7.1 −2.0 −7.7 4.3 −4.9 −10.4 0.1 −8.8 −14.2

60° 12.6 5.7 0.4 8.5 1.5 −3.6 4.7 −2.4 −7.4 0.5 −6.4 −11.3

70° 12.5 9.0 4.4 9.7 6.0 1.5 4.7 0.8 −3.5 1.0 −2.9 −7.1

80° 11.5 10.9 7.6 10.2 9.6 6.2 3.9 3.3 0.1 1.3 0.7 −2.5

90° 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

REFERENCES

AISC (2005), Specification for Structural Steel Buildings, 
ANSI/AISC 360-05, American Institute of Steel Con-
struction, Chicago, Ill.

AISC (2010), Specification for Structural Steel Buildings, 
ANSI/AISC 360-10, American Institute of Steel Con-
struction, Chicago, Ill.

AISC (2016a), Code of Standard Practice for Steel Build-
ings and Bridges, ANSI/AISC 303-16, American Institute 
of Steel Construction, Chicago, Ill.



ENGINEERING JOURNAL / SECOND QUARTER / 2021 / 137

AISC (2016b), Specification for Structural Steel Buildings, 
ANSI/AISC 360-16, American Institute of Steel Con-
struction, Chicago, Ill.

AISC (2017), Steel Construction Manual, 15th Ed., Ameri-
can Institute of Steel Construction, Chicago, Ill.

Alemdar, B.N. (2001), “Distributed Plasticity Analysis of 
Steel Building Structural Systems,” PhD dissertation, 
Georgia Institute of Technology, Atlanta, Ga.

ECCS (1984), “Ultimate Limit State Calculation of Sway 
Frames with Rigid Joints,” Publication No.  33, Euro-
pean Convention for Constructional Steelwork, Brussels, 
Belgium.

Galambos, T.V. and Ketter, R.L. (1959), “Columns under 
Combined Bending and Thrust,” Journal of the Engi-
neering Mechanics Division, ASCE, Vol. 85, No. EM2, 
pp. 135–152.

Ge, X. and Yura, J. (2019), “The Strength of Rotary- 
Straightened Steel Columns,” Proceedings of the Annual 
Stability Conference, SSRC, St. Louis, Mo., pp. 425–442.

Giesen-Loo, E. (2016), “Design of Steel Structures by 
Advanced 2nd-Order Elastic Analysis—Background 
Studies,” Honors Thesis, Bucknell University, Lewisburg, 
Pa.

Martinez-Garcia, J.M. and Ziemian, R.D. (2006), “Bench-
mark Studies to Compare Frame Stability Provisions,” 
Proceedings of the Annual Technical Session and Meet-
ing, SSRC, San Antonio, Texas, pp. 425–442.

Mathur, K. (2011), “Effects of Residual Stresses and Initial 
Imperfections on Earthquake Response of Steel Moment 
Frames,” Master of Science Thesis, University of Illinois 
at Urbana-Champaign, Urbana, Ill.

McGuire, W., Gallagher, R., and Ziemian, R. (2000), Matrix 
Structural Analysis, John Wiley & Sons, Inc., New York, 
N.Y.

Nwe Nwe, M.T. (2014), “The Modified Direct Analysis 
Method: An Extension of the Direct Analysis Method,” 
Honors Thesis, Bucknell University, Lewisburg, Pa.

Wang, Y. (2018), “Advanced Analysis of Beam-Columns 
Resisting Minor Axis Bending,” Honors Thesis, Bucknell 
University, Lewisburg, Pa.

Wang, Y. and Ziemian, R.D. (2019), “Design by Advanced 
Elastic Analysis—An Investigation of Beam-Columns 
Resisting Minor-Axis Bending,” Proceedings of the 
Annual Stability Conference, SSRC, St. Louis, Mo.

Ziemian, R.D. (ed.) (2010), Guide to Stability Design Crite-
ria for Metal Structures, John Wiley & Sons, Inc., Hobo-
ken, N.J.



138 / ENGINEERING JOURNAL / SECOND QUARTER / 2021


