
ENGINEERING JOURNAL / SECOND QUARTER / 2021 / 139

Rafael Sabelli, Director of Seismic Design, Walter P Moore, San Francisco, 
Calif. Email: rsabelli@walterpmoore.com (corresponding)

Lawrence Griffis, Senior Consultant, Walter P Moore, Austin, Texas Email: 
lgriffis@walterpmoore.com

Paper No. 2020-08

ISSN 0013-8029

Technical Note

Internal Second-Order Stiffness: A Refined  
Approach to the RM Coefficient to Account  
for the Influence of P-δδ on P-ΔΔ
RAFAEL SABELLI and LAWRENCE GRIFFIS

ABSTRACT

One component of the B2 amplifier method of addressing second-order effects is the RM coefficient, which represents the influence of P-δ 
on P-Δ effects. This paper presents the background for RM based on LeMessurier’s paper, “A Practical Method of Second-Order Analysis: 
Part 2—Rigid Frames,” (1977), and makes explicit the simplifications entailed in the AISC Specification for Structural Steel Buildings (AISC, 
2016b) formulation for this coefficient. These simplifications, while providing for reliable strength design, can overestimate the P-δ effect for 
typical building applications, especially if applied to drift. A simple formula for RM based on the work of LeMessurier permits a more precise 
estimate, which can be used as a component of both force and displacement amplifiers presented in this paper. This explicit approach to 
the RM coefficient provides the basis for clear presentation of the relationships first-order and second-order stiffness (both internal and 
external), including the distinct effects of P-δ and P-Δ stiffness reductions on equilibrium at the second-order displacement.

Keywords: second-order analysis, stability.

INTRODUCTION

The AISC Specification for Structural Steel Buildings 
(AISC, 2016b), hereafter referred to as the AISC Speci-

fication, presents an approximate method for second-order 
analysis in Appendix 8, using a factor B2 to amplify forces 
to account for P-δ and P-Δ effects. While the application 
of this method is clear in the Specification, the derivation 
is not presented, and the implicit simplifications made can 
easily be missed. This paper traces the connections between 
the source material [the landmark LeMessurier paper, “A 
Practical Method of Second-Order Analysis: Part 2—Rigid 
Frames,” (1977)], and the method in the Specification. In 
the process, the relationship between the distinct amplifiers 
for force (B2) and displacement (presented here as DAF) is 
made explicit, and a refined formulation of RM is presented.

The use of the refined formulation of RM permits minor 
reduction in conservatism for typical building cases. Addi-
tionally, the availability of more accurate hand methods of 
calculating second-order effects empowers engineers to 

better understand and critically evaluate the results of com-
puterized second-order analyses. The reconciliation of the 
B2 amplifier with amplified displacements may be of use 
to engineers employing the amplifier method. Understand-
ing the basis of the amplifier method is particularly helpful 
to students, as is understanding the relationships between 
first-order stiffness and internal and external second-order 
stiffness.

A REFINED RM

Force Amplification

The amplifier-based method of second-order analysis, 
as presented in AISC Specification Appendix 8 (2016b), 
requires consideration of the influence of P-δ on P-Δ 
effects. This is represented by the coefficient RM, which is 
incorporated into the AISC Specification equation for the 
force amplifier B2. The B2 amplifier is defined by Specifi-
cation Equations A-8-6 and A-8-7, which can be combined 
and expressed as:

	

B2 =
1

1−
P Δstory 1

RMHL �

(1)

where
B2	 = force amplification factor for second-order effect

H	 = first-order shear, kips (N)

L	 = story height, in. (mm)



140 / ENGINEERING JOURNAL / SECOND QUARTER / 2021

Pstory	= �total gravity load, Pmf + Plean, at LRFD level, kip 
(N)

Plean 	= �gravity load on non-moment-frame columns, kip 
(N)

Pmf	 = �gravity load on moment-frame columns, kip (N)

RM	 = �stiffness-reduction coefficient to account for 
member P-δ influence on structure P-Δ

Δ1	 = �first-order story drift corresponding to load H (ΔH 
in the AISC Specification), in. (mm)

The AISC Specification LRFD/ASD adjustment factor α is 
omitted from the gravity-load definitions for brevity.

The RM term in Equation 1 effectively reduces the lat-
eral stiffness of the system from the first-order stiffness  
(H/Δ1), and the reduced stiffness with P-δ included (RMH/
Δ1) is used to determine the P-Δ effect. (Note that in this 
study, the terms B2 and RM represent their functions as 
described in their definitions, rather than the formulas for 
these quantities in the AISC Specification. More accurate 
formulas for these quantities are presented later.)

The B2 amplifier can be used to determine the overturn-
ing moment corresponding to equilibrium in the deformed 
condition (i.e., at the second-order drift Δ2), as shown for a 
simple structure in Figure 1:

	 B2HL = ΔHL + Pstory 2� (2)

where
Δ2 = second-order story drift, in. (mm)

(This amplification also applies to the shear at the sloped 
top of the cantilever column, considering the vertical force 
Pmf.)

The B2 amplifier can be expressed as a function of the 
second-order story drift Δ2 by rearranging Equation 2:

	
B2 = 1+

P Δstory 2

HL �
(3)

The symbol FAF can denote a force amplification fac-
tor [“FAF” in Equation A-6 in Griffis and White (2013)], 
which by definition is equal to B2:

	 FAF = B2� (4)

Displacement Amplification

A displacement amplification factor, DAF (“DAF” in Equa-
tion A-7 in Griffis and White [2013]), can be defined as:

	
DAF = 2

1Δ
Δ

�
(5)

Combining Equations 1, 3, and 5, the displacement ampli-
fier DAF can be related to B2 and RM:

	
DAF = B2

RM �
(6)

The RM coefficient can be defined as the ratio of force 
to displacement amplification by rearranging Equation 6:

	
RM = B2

DAF �
(7)

	
RM =

Δ
ΔB2 1

2 �
(8)

The accuracy of both the forces obtained with the ampli-
fier B2 in Equation 1 and the drifts computed using Equa-
tion 6 are dependent on the accuracy of the coefficient RM. 
The AISC Specification (2016b) provides a conservative, 
approximate formula for RM (Specification Equation A8-8):

Fig. 1.  Equilibrium diagram at second-order displacement.
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RM = −1 0.15

Pmf
Pstory �

(9)

The AISC Specification Commentary explains that the 
minimum value of 0.85 (when Pmf/Pstory = 1.0) represents 
a lower bound based on LeMessurier’s work. While Equa-
tion  9 is suitably conservative for reliability in strength 
design, it can overestimate the P-δ effect on drift if used in 
Equation 6, especially for stiff systems, and a more precise 
expression of RM may be obtained based on LeMessurier’s 
work.

Column Flexural Stiffness Reduction Due to P-δδ Effects

Equation  37 in LeMessurier’s paper presents the force-
amplification factor (A.F.), which has the same function as 
B2. Changing terms in LeMessurier’s equation to be consis-
tent with those used earlier gives:

	

B2 =
1

1−
Pstory

HL

1
C− LPmfΔ �

(10)

where
CL = �flexural stiffness-reduction coefficient for a moment-

frame column due to P-δ effects

The coefficient CL is potentially different for each column, 
varying with its deflected shape. For cantilever columns and 
for moment frames with points of inflection near column 
mid-height and beam mid-length, LeMessurier’s Equations 
60 and 58, respectively provide an approximation of CL:

	
C ≅L

12
2 1−

1+G( )2
π

�
(11)

where

G =

EIcol
Lcol
EIg
Lg

∑

∑
�

(12)

and
E	 = modulus of elasticity, ksi (N/mm2)

G	 = moment-frame relative flexural-stiffness parameter

Icol	 = column moment of inertia, in.4 (mm4)

Ig	 = girder (beam) moment of inertia, in. (mm)

Lcol	= column height, in. (mm)

Lg	 = girder length, in. (mm)

The “−1” term in Equations 11 is the subtraction of the P-Δ 
effect on moment-frame columns, as this is accounted for 
in the effect of Pstory in Equation 10. The largest possible 

value of CL corresponds to the buckled shape of a rigid-base 
cantilever or fixed-fixed column with rigid beams at the top 
and bottom (for which G = 0):

	

CL
12
2

1

0.216

≤

≤
π

−

�

(13)

As is shown later, conservatively taking the maximum 
value of CL from Equation 13 for all columns is less conser-
vative than Equation 9. For real buildings, however, beams 
framing into columns do not provide rigid restraint against 
column rotation, and Equation 11 facilitates determination 
of significantly lower values of CL than the maximum value 
from Equation 13. It is possible to establish a maximum 
value of CL based on a minimum value for the ratio G (Equa-
tion 12) corresponding to typical beam-column proportion-
ing and frame dimensions, further reducing the calculated 
P-δ effects. (This beam flexibility must also be incorpo-
rated into the analysis. The total effect of beam flexibility 
is, of course, an increase in displacement and a decrease in 
strength.) For example, Cheong-Siat-Moy (1976) proposed 
optimal proportioning of frames for drift control, which 
corresponds to G = 1.0. Similarly, the AISC Seismic Provi-
sions (2016a) contain proportioning requirements for beam 
and column strength for special moment frames that have 
some correlation to Equation 12. No minimum values for 
the ratio G are proposed here; engineers may wish to estab-
lish such limiting values on a project basis.

LeMessurier presents an equation for a second-order 
drift ratio (rather than for a displacement amplifier) in 
Equation 31. In the terms used here, that equation is:

	

2

L
= H
HL

1
Pstory C−− LPmfΔ

Δ

�

(14)

Following Griffis and White (2013), the displacement 
amplifier can be determined by combining Equations 5 and 
14:

	

DAF = 1

1− 1 Pstory +Δ CLPmf( )
HL �

(15)

When Pmf is zero (such as for a building without moment 
frames or with negligible axial load on the moment-frame 
columns), RM is 1.0, and both amplifiers (FAF and DAF) sim-
plify and become equal. Thus, the amplifier B2 represents 
both force and displacement amplification if RM = 1.0:

	

B2 =
1

1−
P Δstory 1

HL  

if RM = 1.0� (16)
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The AISC Specification B2 is conservative for force 
amplification but is unconservative if used for drift ampli-
fication. The range between the explicitly calculated force 
and displacement amplifiers is very small for θ ≤ 0.25. The 
Specification B2 overestimates the force by 5% or less and 
could be used as an approximate amplifier for drift, under-
estimating that effect by no more than 2% in that range. 
Because the explicit values of RM using Equation 17 are very 
close to 1.0 for the range of typical building practice (B2 ≤ 
1.5), the simplification of using B2 (with the Specification 
value of RM) as the displacement amplifier will result in less 
error than using the Specification value for RM in Equation 
6. Use of RM from Equation 17 with Equations 1 and 5 will 
produce force and drift results closer to an explicit second-
order analysis than will use of the Specification B2.

The discrepancy between the AISC Specification and 
explicit amplifiers B2 increases at larger values of the sta-
bility coefficient, and at very large values the explicit force 
amplifier B2 (Equation 20) exceeds the Specification B2 
(Equation 1) using the Specification RM (Equation 9). The 
Specification RM matches the explicit RM (Equation 17) at 
θ = 0.70, for which B2 ranges from 3.3 (for Pmf/Pstory = 0.0) 
to 5.7 (for Pmf/Pstory = 1.0). Such high second-order effects 
are not expected in practical building designs. (B2 ≥ 5.0, 
combined with stiffness reduction due to inelasticity, results 
in instability.) As such, the Specification equations pro-
duce a reliable upper bound for force amplification on real 
structures.

According to AISC Specification Section C2.1(b), P-δ 
effects on P-Δ can be ignored for systems meeting certain 
conditions. Among these conditions are that Pmf/Pstory ≤ 3, 
and Δ2/Δ1 ≤ 1.7 (using the reduced stiffness of the Direct 
Analysis Method, which corresponds to 1.5 for a full- 
stiffness analysis). That range is shaded in Table  1. (The 
stability coefficient θ corresponds to a first-order analysis 
with unreduced stiffness.) The values in Table  1 confirm 
that negligible error in force amplification is expected in 
that range as a result of using RM = 1.0.

In Table 1, a line is drawn beneath values of θ = 0.25, 
which is the limit for this coefficient for seismic design 
in ASCE/SEI 7, Section 12.8.7 (ASCE, 2016). Within that 
range the smallest value of RM is 0.95. Thus, for seismic 
design, the value of RM could be determined using a value 
of 0.05 (or lower) in lieu of 0.15 in Equation 9, providing for 
greater economy. Similar revisions of Equation 9 are pos-
sible for other bounds on the design space, such as limiting 
B2 or limiting Pmf/Pstory.

SECOND-ORDER STIFFNESS REDUCTIONS

The refined definition or RM in Equation 17 serves not only 
as the basis of more accurate force and displacement ampli-
fiers; it also facilitates a more accurate expression of the 

The Refined RM Approach

Combining Equations 7, 10, and 15 gives an expression for 
RM consistent with the amplifiers based on LeMessurier:

	
RM = −1

P Δmf 1

HL
CL

�
(17)

Thus, the system stiffness-reduction effect of P-δ on P-Δ 
represented by RM is a function of the first-order lateral 
stiffness (H/Δ1). For systems with high lateral stiffness, the 
P-δ effect on P-Δ may be quite small.

Stability-Coefficient-Based Second-Order Amplifiers

The refined formulation of RM (Equation 17) can be pre-
sented as a function of the stability coefficient θ [defined 
in ASCE/SEI 7 (2016)], which is often used as a measure 
of second-order effects. The ASCE 7 equation can be pre-
sented in terms consistent with those in this paper:

	
=θ
P Δstory 1

HL �
(18)

where
θ = �stability coefficient per ASCE/SEI 7, Section 12.8.7, 

Equation 12.8-16

Thus

	
RM = θ−1

CLPmf
Pstory �

(19)

Incorporating Equation 18, Equations 10 and 15 can be 
expressed as functions of θ:

	

B2 = 1+
1

1
1+−

CLPmf
Pstory

⎛
⎝⎜

⎞
⎠⎟θ �

(20)

	

DAF =
1

1 1+θ−
CLPmf
Pstory

⎛
⎝⎜

⎞
⎠⎟ �

(21)

Table 1 presents values of force amplifiers (B2), displace-
ment amplifiers (DAF), and coefficients RM for a range of 
stability coefficient θ. Force amplifiers B2 and coefficients 
RM are computed using both AISC Specification equations 
(Equations 1 and 9) and the explicit equations presented 
in this paper (Equations 20 and 17) based on Pmf/Pstory = 
0.333 and 1.0. The displacement amplifiers (DAF) are also 
based on those values of Pmf/Pstory and use Equation 21. For 
comparison, values of the amplifier B2 for Pmf = 0 (Equa-
tion 16) are also presented. Values in Table 1 are calculated 
utilizing the maximum value of CL per Equation 13; this 
simplification allows their general use as the worst case but 
overestimates the P-δ effect for real buildings with non-
rigid beams.



ENGINEERING JOURNAL / SECOND QUARTER / 2021 / 143

RM
H

1Δ  
= �internal second-order stiffness, kip/in. (N/mm)

This internal second-order stiffness corresponds to the 
internal force B2H and the displacement Δ2, as can be seen 
by combining Equation 8 with the definition above:

	
RM

H

1
= B2H

2Δ Δ �
(24)

Stiffness Equations Using P-ΔΔ and P-δδ 
Stiffness Reductions

The presence of the RM term in Equation 22 appears 
to complicate the relationships between the first-order,  
second-order, and P-Δ stiffnesses. However, Equation 17 
can be used to simplify the relationship. Applying the for-
mulation of RM from Equation 17 to the internal second-
order stiffness results in:

	
RM

H

1
= −H

1

CLPmf
LΔ Δ �

(25)

This last term is the stiffness-reduction effect of P-δ on the 
system, not including the P-Δ effect. It is termed the “P-δ 
stiffness reduction” and is given the symbol KPδ:

	
KP =

CLPmf
L

δ
�

(26)

P-δ effect and its role in the construction of the second-
order stiffness.

Internal Second-Order Stiffness

Combining Equations 1 and 2 gives the following stiffness 
relationship:

	

H

2
= −RM

H

1

Pstory
LΔΔ �

(22)

The three major terms in this equation may be considered to 
represent important system properties:

H

2Δ 		
= second-order stiffness, kip/in. (N/mm)

H

1Δ 		
= first-order stiffness, kip/in. (N/mm)

Pstory
L 	

= P-Δ stiffness reduction, kip/in. (N/mm)

This P-Δ stiffness reduction is given the symbol KPΔ:

	
KPΔ =

Pstory
L �

(23)

Equation 22 also includes the “internal second-order 
stiffness,” the reduced lateral stiffness due to the P-δ effect 
of axial force on moment-frame columns (Pmf):

Table 1.  Amplifiers and RM Values

θθ

Pmf == 0 Pmf == 0.333 Pstory Pmf == 1.00 Pstory

Both
AISC 

Specification Explicit
AISC 

Specification Explicit

B2 RM B2 RM B2 == FAF DAF RM B2 RM B2 == FAF DAF

EQ 16 EQ 9 EQ 1 EQ 19 EQ 20 EQ 21 EQ 9 EQ 1 EQ 19 EQ 20 EQ 21

0.05 1.05 0.95 1.06 1.00 1.05 1.06 0.85 1.06 0.99 1.05 1.06

0.10 1.11 0.95 1.12 0.99 1.11 1.12 0.85 1.13 0.98 1.11 1.14

0.15 1.18 0.95 1.19 0.99 1.18 1.19 0.85 1.21 0.97 1.18 1.22

0.20 1.25 0.95 1.27 0.99 1.25 1.27 0.85 1.31 0.96 1.26 1.32

0.25 1.33 0.95 1.36 0.98 1.34 1.37 0.85 1.42 0.95 1.36 1.44

0.30 1.43 0.95 1.46 0.98 1.44 1.47 0.85 1.55 0.94 1.47 1.57

0.35 1.54 0.95 1.58 0.97 1.56 1.60 0.85 1.70 0.92 1.61 1.74

0.40 1.67 0.95 1.73 0.97 1.70 1.75 0.85 1.89 0.91 1.78 1.95

0.45 1.82 0.95 1.90 0.97 1.87 1.93 0.85 2.13 0.90 1.99 2.21

0.50 2.00 0.95 2.11 0.96 2.08 2.16 0.85 2.43 0.89 2.28 2.55

0.60 2.50 0.95 2.71 0.96 2.68 2.80 0.85 3.40 0.87 3.22 3.70

0.70 3.33 0.95 3.80 0.95 3.80 4.01 0.85 5.67 0.85 5.70 6.72

0.80 5.00 0.95 6.33 0.94 6.62 7.02 0.85 17.00 0.83 30.2 36.6
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Thus, the effect of P-δ on the system is not a multiplier on 
the first-order stiffness (as could be inferred from Equa-
tion 22). Instead, it can be described as a subtraction. The 
stiffness-sensitive formulation of RM in Equation  17 sim-
ply reflects the fact that the importance of the reduction 
depends on its magnitude relative to the first-order stiffness.

The force and displacement amplifiers in Equations 10 
and 15 can be presented in terms of first-order stiffness and 
the P-Δ, and P-δ stiffness reductions:

	
B2 =

H Δ δ−1 KP

H Δ −1 KP δΔ + KP( )�
(27)

	

DAF =
1

1
KP δΔ + KP

H 1
−

Δ �

(28)

Combining Equations 22, 23, and 25 gives the external 
second-order stiffness:

	

H

2
= H

1
KP δΔ + KP( )−

ΔΔ �
(29)

Equation 29 can be understood as signifying that the 
external stiffness in the presence of gravity loads is less 
than first-order stiffness due to the P-Δ and the P-δ stiff-
ness reductions. Equation 29 can also be presented as:

	

H

1
= H

2
+ KP δΔ + KPΔ Δ �

(30)

In this format, the equation signifies that the required first-
order stiffness is the required external stiffness plus the P-Δ 
and the P-δ stiffness (applied as an addition, rather than as 
a reduction). This latter form has two important corollaries. 
First, if an engineer is designing a building to meet a drift 
limit, the magnitude of the gravity loads and their effect on 
the system stiffness requires a stiffer lateral system. Sec-
ond, the required first-order stiffness may be determined 
in advance of design and analysis based on the drift limit, 
the geometry, and the external loading. Such a process is 
illustrated in Sabelli et al. (in review). This simple relation-
ship also facilitates the use of hand methods to validate the 
results of computer analysis.

Note that the P-δ the stiffness reduction (KPδ) not only 
adds to the first-order stiffness required to meet a (second-
order) drift limit in Equation 30. It also reduces the external 

stiffness (Equation 29) and thus increases the second-order 
drift Δ2, indirectly contributing to the additional strength 
required by KPΔΔ2 to resist the external force H.

As formulated in Equations 29 and 30, the first-order, 
second-order, P-Δ, and P-δ stiffness have a simple arithme-
tic relationship, which is diagrammed in Figure 2. The stiff-
nesses that correspond to the forces at the second-order drift 
Δ2 are those in Equation 22: the external stiffness, which 
corresponds to the applied load H; the internal second-
order stiffness, which corresponds to the total load effect 
B2H; and the P-Δ stiffness reduction, which corresponds 
to the difference between the two. The first-order stiffness 
by definition corresponds to the first-order displacement Δ1 
resulting from the lateral load H. The other stiffnesses (the 
P-δ and total second-order stiffness reductions) are relevant 
in constructing the external stiffness but do not correspond 
directly to the load effect on the system.

As can be seen in Figure 2, the drift amplification from Δ1 
to Δ2 does not produce a total load effect on the first-order 
stiffness line. Instead, the total load effect is somewhat less, 
falling on the internal second-order stiffness line. Thus, 
the drift amplifier is greater than the force amplifier when 
KPδ > 0 (and thus RM < 1.0), consistent with Equation 6.

SUMMARY AND CONCLUSIONS

This paper presents the background for the AISC Specifi-
cation factor RM based on original work by LeMessurier 
(1977). It also presents a refined expression for RM in Equa-
tion 17, which can be used to reduce conservatism result-
ing from simplifications in the AISC Specification (2016b) 
formulation of this quantity. The paper also presents the 
corresponding equation for B2 in Equation 10; this is more 
accurate than the use of the Specification equation for RM. 
A corresponding displacement amplifier (DAF, presented in 
Equation 15) can be used to estimate second-order drift Δ2 
from the first-order drifts Δ1. The refined formulation of 
RM is used to present a clear relationship between the first-
order, second-order, P-Δ, and P-δ stiffnesses.

The methods presented herein may be used by practicing 
engineers to reduce conservatism in design and to critically 
evaluate the results of computerized second-order analy-
sis. The relationships developed may be beneficial to those 
learning the amplifier method and second-order effects 
more generally.
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Fig. 2.  First-order and second-order stiffness diagram.
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