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ABSTRACT

Traditionally, the torsional design of rectangular members has been based on elastic calculations. For member design, this approach is justi-
fied because beams subjected to torsion are usually controlled by torsional rotation serviceability limits. However, designs that are based on 
a first yield criterion underestimate the strength of connection elements. To evaluate the true torsional behavior of connection elements, vari-
ous factors affecting the torsional strength of short rectangular members are investigated, showing that the torsional strength of connection 
elements can be predicted with rational analysis models using an ultimate strength approach.

The torsional strength of connection elements can be attributed to the resistance due to uniform torsion, warping torsion, and the Wagner 
effect. A method is proposed for calculating the strength of rectangular connection elements subjected to any possible combination of loads, 
including torsion. The design method results in a significant increase in torsional strength compared to traditional analysis methods. The 
method can be used to analyze extended single-plate connections subjected loads in any direction, including axial forces and combined 
vertical and horizontal shear forces. Three design examples show the proper application of the design method.

Keywords:  torsion, torsional strength, torsional rotation, warping, rectangular connection elements, ultimate strength.

INTRODUCTION

T raditionally, the torsional design of rectangular mem-
bers has been based on elastic calculations. For member 

design, this approach is justified because beams subjected to 
torsion are usually controlled by torsional rotation service-
ability limits. However, designs that are based on a first-yield 
criterion underestimate the strength of connection elements.

For extended single-plate connections, the elastic uniform 
(Saint Venant) torsion strength was used by Sherman and 
Gorbanpoor (2002) to develop a proposed design equation 
for the limit state of torsion. More recently, Thornton and 
Fortney (2011) derived an equation to calculate the torsional 
strength of extended single-plate connections using the plas-
tic uniform torsion strength. Dowswell (2015) proposed an 
interaction equation for the plastic strength of rectangular 
connection elements subjected to various loads, including 
torsion.

Although the theoretical plastic uniform torsion strength 
is 50% greater than the elastic strength (Dowswell, 2015), 
an evaluation of the existing research on extended single-
plate shear connections revealed strengths much higher than 
the plastic uniform torsion strength. Additionally, experi-
ments on single-plate connections subjected only to torsion 
(no shear or moment), showed that the connection torsional 

strength greatly exceeds the uniform torsion strength (Ben-
nets et al., 1981).

To evaluate the true torsional behavior of connection ele-
ments, various factors affecting the torsional strength of 
short rectangular members are investigated in this paper. 
The purpose of this paper is to show that the torsional 
strength of connection elements can be predicted with ratio-
nal analysis models using an ultimate strength approach. A 
design method based on these models, including the inter-
action of torsion with other loads, is proposed. The results 
from practical connections are evaluated and compared to 
existing analysis methods, and three design examples show 
the practical implementation of the proposed design method.

UNIFORM TORSION

For uniform torsion, also known as Saint Venant torsion, the 
applied torque is resisted by shear stresses distributed over 
the cross section. The uniform torsional moment is

	 Tu = GJθ′� (1)

For uniform members with constant torque along the length, 
θ′  = θ/L. The torsional constant for a rectangular member is

	 J = kudt3� (2)

where ku = 3 − 0.2t/d for d/t < 10 and ku = 3 for d/t ≥ 10 
(Seaburg and Carter, 1997). The first-yield torsional moment 
is
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For d/t ≥ 10, which satisfies the geometry for most connec-
tion elements,
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For uniform members with constant torque along the length, 
the elastic rotation is
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The yield rotation is
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The plastic uniform torsion strength is
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where
Fy	= specified minimum yield strength, ksi

G	 = shear modulus of elasticity = 11,200 ksi

J	 = torsional constant, in.4

L	 = member length, in.

Tu	= uniform torsional moment, kip-in.

d	 = member depth, in.

t	 = member thickness, in.

z	 = �distance along the member length, in.

τy	 = �shear yield stress = 0.6Fy, ksi

θ	 = �angle of rotation, rad

θ′	= �angle of rotation per unit length, first derivative of θ 
with respect to z, rad

By comparing Equation 4 to Equation 7, it can be seen 
that Tup = 1.5Tuy. The torsional stiffness is linear up to the 
yield moment, Ty, and then the curve becomes nonlinear up 
to a maximum value of T = Tup = 1.5Tuy, as shown in Figure 1 
(Dowswell, 2015).

WARPING

Except for circular cross sections, warping is present in 
all members subjected to torsion. Warping is classified as 
either primary or secondary. For primary warping, torsion is 
resisted by stresses across the element depth, and secondary 
warping is where torsion is resisted by stresses across the 
element thickness. For most members, any resistance devel-
oped through secondary warping is insignificant compared 
to uniform torsion and primary warping resistances.

For typical rectangular members, warping is negligible 
compared to uniform torsion. Therefore, the common prac-
tice of neglecting any warping contribution for rectangular 

members is justified. However, warping can provide signifi-
cant torsional resistance to connection elements where the 
length is relatively short compared to the cross-sectional 
dimensions. This behavior was shown by Reissner and Stein 
(1951), who solved the differential equation of a rectangular 
cantilever plate subjected to a concentrated torsional moment 
at the free end, and by Baba and Kajita (1982), who devel-
oped inelastic finite element models of rectangular cantile-
ver members subjected to a free-end concentrated torsion.

Elastic Strength

The elastic warping behavior can be analyzed using AISC 
Design Guide 9, Torsional Analysis of Structural Steel 
Members (Seaburg and Carter, 1997). The warping torsional 
moment is

	 Tw = −ECwθ′′′� (8)

The warping constant for a rectangular member is

	 Cw = kwd3t3� (9)

For narrow rectangles with d/t ≥ 10 (Gjelsvik, 1981) 
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For rectangular members with d/t < 10 (Balaz and Kolekova, 
2002)
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Figure  2 shows warping stress distributions for elastic 
warping, inelastic warping and plastic warping. The maxi-
mum value for the elastic warping normal stress distribution 

Fig. 1.  Normalized torsion versus  
normalized angle of twist (Dowswell, 2015).
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as shown in Figure 2(a), which occurs at the corners, is

	 σwc = EWncθ′′� (12)

The normalized warping function at the corner of the cross 
section is

	
W

dt

4
nc =

�
(13)

where
Cw	 = warping constant, in.6

E	 = modulus of elasticity, ksi

Wnc	= �normalized warping function at the corner of the 
cross section, in.2

θ′′	 = second derivative of θ with respect to z, rad

θ′′′	 = third derivative of θ with respect to z, rad

Figure 3 shows the deformed shape of a single-plate con-
nection subjected to twisting (Sherman and Ghorbanpoor, 
2002; Moore and Owens, 1992; Abou-Zidan, 2014; Sulei-
man, 2013). The double-curvature along the length indicates 
that warping is fixed at both ends of the plate.

Case 2  in AISC Design Guide 9, Appendix B, provides 
charts for determining θ, θ′, θ′′ and θ′′′ for members sub-
jected to concentrated end torques with warping fixed at 
each end. The values can also be calculated with the equa-
tions in Moore and Mueller (2002). The maximum warping 
stresses are at the member ends (z = 0 and z = L), where the 
equation for θ′′ reduces to
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where

	
a

EC

GJ
w=

�
(15)

T = torsional moment, kip-in.

Isolated Flange Method

Gjelsvik (1981) showed that the elastic torsional moment is 
statically equivalent to a couple formed of two equal and 
opposite out-of-plane forces, F, acting on each half of the 
cross section at h  = 2d/3, as shown in Figure  4(a). Gjels-
vik’s equivalent couple can be expanded to simplify warping 
calculations for connection elements, where only the shaded 
portion of the cross section on each half of the member depth 
is effective in resisting force, F. The equivalent cross-section 
t × αd is modeled as a flexural member of length L with the 
fixed-slider boundary conditions shown in Figure 4(b). The 
required moment at each end of the member is
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(16)

This isolated-flange analysis method is common in the tor-
sional analysis of I-shaped members, where the flanges are 
isolated and treated as flexural members to calculate the 
warping strength.

For elastic stresses, α = 4 and the out-of-plane force, F, is
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The weak-axis yield moment of the equivalent beam, Mye, is
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Setting Equation 16 equal to Equation 18 and solving for 
F results in the out-of-plane force required to initiate first 
yield, Fwy.
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	 (a)  elastic	 (b)  inelastic	 (c)  plastic	 Fig. 3.  Torsional
				    deformation of a
		  Fig. 2.  Warping stresses.		  connection element.
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Setting Equation 17 equal to Equation 19 and solving for Tw 
results in the warping torsion required to initiate first yield.
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The rotation can be estimated from the free-end deflec-
tion of the equivalent beam, δ, shown in Figure 4(b). The 
end deflection is
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The weak-axis moment of inertia of the equivalent beam is
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Substituting Equations 17 and 22 into Equation 21 results 
in
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Using the geometry in Figure 5, the rotation is
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Substituting Equations 19 and 22 into Equation 21 results 
in the yield deflection
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The yield rotation is

	

d

F L

Edt

2

2

3

wy
y

y
2

θ =
δ

=
�

(26)

Finite element models of rectangular members subjected 
to torsion (May and Al-Shaarbaf, 1989; Baba and Kajita, 
1982; Bathe and Chaudhary, 1982) exhibited an inelastic 

Fig. 5.  Isolated flange method for warping rotation.

(a)  cross section

(b)  top view

Fig. 4.  Isolated flange method for warping analysis.
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warping response similar to the uniform torsion curve in 
Figure 1, with the inelastic warping torsion contributing sig-
nificantly to the total torsional resistance. For calculating 
the inelastic strength, F is assumed to act at the center of the 
effective depth, αd. The out-of-plane forces are
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The weak-axis plastic flexural strength of the equivalent 
beam is
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Setting Equation 16 equal to Equation 28 and solving for 
F results in the out-of-plane force required for the plastic 
strength.
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Setting Equation 27 equal to Equation 29 and solving for Tw 
results in the inelastic warping resistance.
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At α = 2, the plastic warping strength, shown in Figure 2(c), 
is
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Comparing Equation  31 to Equation  20 shows that the 
plastic warping strength is 2.25 times the first-yield moment. 
However, the condition used to derive Equation  31 can-
not be reached due to out-of-plane translation compatibil-
ity requirements at the member mid-depth. At α = 0.2113, 

the plastic strength is reached only at the top and bottom 
fibers of the cross section, resulting in an inelastic warping 
strength of
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where
F	 = horizontal couple force, kips

I	 = moment of inertia, in.4

Tw	 = warping torsional moment, kip-in.

αd	= effective depth of the equivalent cross section, in.

δ	 = deflection of equivalent beam, in.

δy	 = yield deflection of equivalent beam, in.

THE WAGNER EFFECT

Also neglected in the design of torsion members is the Wag-
ner effect (Wagner, 1936), which is a nonlinear, second- 
order torque that increases the torsional strength and stiff-
ness (Kjar, 1967; Gregory, 1960). The Wagner torque is 
negligible for many connection geometries at practical 
serviceability rotations. However, a discussion is merited 
because the Wagner torsion contributes to the stable inelas-
tic torsion-rotation curves exhibited by extended single-plate 
connection tests and finite element models. Also, the Wag-
ner effect may explain why short connection elements, such 
as conventional single-plate connections, are only rarely 
limited by torsional rotations.

Elastic Strength

The Wagner solution for rectangular members was docu-
mented by Timoshenko (1956) and later by Cook and Young 
(1985) and Trahair (2003). Rotation of the member causes a 
longitudinal elongation of the fibers that are farthest from 
the center of rotation. Figure 6 shows that the tensile stresses 
caused by the elongation exerts a resisting torque about the 

	 	 	
	 (a)  torsionally loaded member	 (b)  cross section	 (c)  longitudinal stresses

Fig. 6.  Mechanics of the Wagner effect.
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Due to the short length of conventional single-plate shear 
connections, the Wagner effect can be significant. Fig-
ure 7(a) plots the torsion-rotation curve for a a-in. × 18-in. 
plate, showing the uniform torsion, Wagner torsion, and the 
total torsional resistance. The plate is 3 in. long, which is the 
typical distance between the bolt line and the weld line for 
a conventional single-plate shear connection. The Wagner 
torsion is negligible for θ < 0.5° but is significant at 1° and 
provides a 220% increase in torsional resistance at θ = 2°. 
However, at θ = 2°, the maximum tensile stress is 106 ksi. 
For Fy = 50 ksi, first yield due to normal stress occurs at θ = 
1.37°, where the increase in torsional resistance is 100%. For 
four different plate geometries, β is plotted in Figure 7(b) as 
a function of θ, where the substantial effect of decreasing the 
plate depth is clear.

Because extended single-plate shear connections are 
longer, and usually thicker, than conventional single-plate 
shear connections, the Wagner effect is often negligible 
for extended configurations. Figure  8(a) is a plot of the  
torsion-rotation curve for a w-in. × 18-in. plate, showing the 
uniform torsion, Wagner torsion and the total torsional resis-
tance. The plate is 10 in. long, representing a common dis-
tance between the bolt line and the weld line for an extended  
single-plate shear connection. The Wagner torsion is neg-
ligible for the practical range of serviceability rotations, 
providing only 11% of the total torsion at θ = 3°. For four 
different plate geometries, β is plotted in Figure 8(b) as a 
function of θ, where the Wagner effect is shown to be sig-
nificant only for plates with high depth-to-thickness ratios.

COMBINING TORSIONAL EFFECTS

The elastic torsional resistance is the sum of the uniform 
torsion, the warping torsion, and the Wagner torsion. How-
ever, because each torsional component contributes to the 
total resistance based on its relative stiffness, only one of the 
three components is likely to contribute its full first-yield 
torsional moment. In the elastic range, uniform and warping 
torsion can be combined using a stiffness analysis accord-
ing to AISC Design Guide 9. This approach is preferred 
for member design, where beams are usually controlled by 
torsional rotation serviceability limits. However, designs 
that are based on a first-yield criterion underestimate the 
strength of connection elements.

Rotation

According to Trahair et al. (2008), the angle of rotation cal-
culated for both uniform torsion and warping torsion can be 
calculated independently and combined using Equation 40 
to estimate the actual angle of rotation.
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axis of twist that increases with θ. The Wagner torsion is 
(Trahair, 2003)
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The Wagner constant is
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Geometrically nonlinear elastic finite element models 
showed the accuracy of Equations 33 and 34 (Trahair, 2003). 
The axial stress developed by the Wagner effect, as shown in 
Figure 6(c), is (Cook and Young, 1985)
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The maximum stress is located at the top and bottom edges 
of the member, where c = d/2 
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If warping is neglected, the torsional resistance is the sum 
of the Wagner torsion and the uniform torsion (Cook and 
Young, 1985), resulting in
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and β is the normalized increase in torsional resistance due 
to the Wagner effect
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For uniform members with constant torque along the 
length, θ′  = θ/L and the normalized increase in torsional 
resistance due to the Wagner effect is
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where
In	= Wagner constant, in.6

Tn	= Wagner torsional moment, kip-in.

c	 = distance to outermost fiber, in.

Evaluation of Equation  39  indicates that the torsional 
resistance is dependent on the rotation angle and can 
increase significantly with member depth. The Wagner tor-
sion decreases with length and thickness.
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(a)  Te versus θ for a a×18×3-in.-long plate

(b)  β versus θ

Fig. 7.  The Wagner effect for conventional single-plate shear connections.
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(a)  Te versus θ for a w×18×10-in.-long plate

(b)  β versus θ

Fig. 8.  The Wagner effect for extended single-plate shear connections.
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For members in the inelastic range, the angle of rotation can 
be estimated with Equation 41 (Pi and Trahair, 1994).
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where
Tp	= plastic torsional moment, kip-in.

Tr	 = required torsional moment, kip-in.

θu	= angle of rotation for uniform torsion, rad

θw	= angle of rotation for warping, rad

Plastic Strength

Because the Wagner effect requires large rotations for sig-
nificant torsional resistance and the behavior under inelastic 
conditions is unclear, the Wagner torsion will be neglected. 
Dinno and Merchant (1965) and Pi and Trahair (1995) pro-
posed a plastic torsion analysis where the plastic uniform 
torsion and the plastic warping torsion are evaluated inde-
pendently and then added together to determine the total 
torsional resistance. This method assumes no interaction 
between uniform and warping torsion, which agrees well 
with experimental results on small-scale I-shaped members 
documented by Dinno and Merchant. Using the interac-
tion suggested by Dinno and Merchant, the plastic torsional 
strength is
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where
Tup	 = plastic uniform torsional moment, kip-in.

Twp	= plastic warping torsional moment, kip-in.

Figure 9 shows the predicted inelastic torsion versus rota-
tion curves for a w×18×10-in.-long ASTM A572 Grade 50 
plate. To show the effect of warping, both the uniform tor-
sion curve and the uniform plus warping curves are plotted. 
The dashed lines show the elastic response and the solid lines 
show the inelastic curves. For the uniform torsion curve, the 
first-yield torsion is 101 kip-in. at θ = 2.05°, and 96% of the 
plastic strength is developed at θ = 6.14°. When warping is 
included, yielding is caused by warping normal stresses at a 
torsion of 72.7 kip-in. at θ = 0.447°. However, the inelastic 
warping response shows a dramatic increase in stiffness and 
inelastic strength compared to the uniform torsion curve.

COMBINING TORSION WITH OTHER LOADS

Members subjected to both flexure and torsion must consider 
second-order effects and the strength reduction due to load 
interaction. After the required flexural and second-order 
torsional moments are determined, the available strength 
is calculated by combining the load ratios in an interaction 
equation.

Plastic Strength

Dowswell (2015) proposed Equation 43 for the interaction of 
flexure, shear, axial and torsion; however, the torsional inter-
action term was developed for uniform torsion and does not 
include the effects of warping and Wagner torsion. Because 

Fig. 9.  Torsion-rotation curves for a w×18×10-in.-long ASTM A572 Grade 50 plate.
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both warping and Wagner torsion develop longitudinal nor-
mal stresses, the resulting stress distributions are similar 
to the axial and flexural stresses. However, separating the 
torsional components and combining them with the flexural 
and axial load ratios would lead to unnecessary complexity 
in the interaction equation. Furthermore, due to the lack of 
research in this area, the accuracy of such an equation could 
not be verified. For design purposes, it is believed that Tp, as 
calculated with Equation 42, can be used in the torsion ratio 
of Equation 43.
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where
Mpx	= plastic bending moment about the x-axis, kip-in.

Mpy	= plastic bending moment about the y-axis, kip-in.

Mrx	= required x-axis flexural strength, kip-in.

Mry	= required y-axis flexural strength, kip-in.

Pr	 = required axial strength, kips

Py	 = axial yield load, kips

Vp	 = plastic shear strength, kips

Vr 	 = required shear strength, kips

Second-Order Effects

For open sections subjected to both torsion and strong-axis 
flexure, the second-order torsional effects are dependent 
on the critical lateral-torsional buckling moment. Second-
order torsional moments and rotations can be calculated by 
amplifying the results of a first-order analysis (Ashkinadze, 
2008; Lindner and Glitsch, 2005; Boissonnade et al., 2002; 
Trahair and Teh, 2000; Pi and Trahair, 1994; Pastor, 1977). 

The amplification factor for rectangular members is (Zahn, 
1984)
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The second-order torsional rotation is

	 θ2 = Bθ1� (45)

The second-order torsional moment is

	 T2 = BT1� (46)

The critical moment used in Equation 44 is

	 Mcr = FcrSx� (47)

The critical stress is calculated with AISC Specification 
(AISC, 2016) Equation F11–4
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where
Cb	 = lateral-torsional buckling modification factor

Fcr	 = critical stress, ksi

Mcr	= �elastic critical buckling moment for strong-axis 
flexure, kip-in.

Sx	 = elastic section modulus about the x-axis, in.3

T1	 = first-order torsional moment, kip-in.

θ1	 = first-order torsional rotation, rad

SINGLE-PLATE SHEAR CONNECTIONS

Single-plate shear connections, where the beam is field-
bolted to a connecting plate as shown in Figure 10, have an 

	 	 	
	 (a)  conventional	 (b)  extended with no stiffener	 (c)  extended with stiffener

Fig. 10.  Single-plate connections.
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out-of-plane eccentricity between the beam and the plate. 
Under shear loading, this eccentricity causes a torsional 
moment, which has been previously discussed by Muir and 
Hewitt (2009) and Thornton and Fortney (2011).

Conventional Configuration

Of the many experimental research projects studying the 
behavior of conventional single-plate connections [Fig-
ure  10(a)], only the results of Moore and Owens (1992) 
showed significant torsional rotations. In these, and the 
remaining tests, the out-of-plane eccentricity had a negli-
gible effect on the serviceability and strength and was not 
considered by the researchers as a significant design param-
eter. As discussed in previous sections of this paper, the 
conventional single-plate geometry maximizes the torsional 
resistance provided by warping and the Wagner effect.

Extended Configuration

Nonstiffened and stiffened extended single-plate shear con-
nections are shown in Figures 10(b) and 10(c), respectively. 
Twisting of extended single-plate connections subjected to 
shear loading has been reported in experimental specimens 
(Sherman and Ghorbanpoor, 2002) and finite element mod-
els (Hijaj and Mahamid, 2017; Abou-Zidan, 2014; Suleiman, 
2013). The experimental measurements of Goodrich (2005) 
and Sherman and Ghorbanpoor (2002) showed an increase 
in torsional strength and rotational stiffness when the plate 
is welded to a stiffener. The finite element models of Rah-
man et al. (2007) and Mahamid et al. (2007) showed similar 
results.

For nonstiffened connections, the design procedure in the 
AISC Steel Construction Manual (AISC, 2017) was devel-
oped by Muir and Hewitt (2009). The equations implicitly 
limit excessive torsional rotations by combining the shear 
and flexural strengths using an elliptical interaction to 
approximate von Mises theory. If the torsional loads are 
explicitly included in the calculations, the load ratios can 
be combined using plastic interaction according to Equa-
tion 49, which is simplified from Equation 43.
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The total plastic torsional strength, Tp, is calculated with 
Equations 7, 31 and 42. The second-order torsional moment 
is calculated with Equations 44 and 46, and the first-order 
torsional moment is

	 T1 = Rre� (50)

The eccentricity is

	
e

t t

2
w= +

�
(51)

The strong-axis flexural moment, Mrx, is dependent on the 
location of the inflection point. At flexible supports, it is 
conservative to assume the connection behaves as a friction-
less pin, resulting in

	 Mrx = RrL� (52)

The plastic shear strength is

	 Vp = 0.6Fytd� (53)

where
Mnx	= strong-axis flexural strength, kip-in.

Rr	 = required beam end shear reaction, kips

T2	 = second-order torsional moment, kip-in.

e	 = �horizontal eccentricity for a single-plate connec-
tion, in.

t	 = plate thickness, in.

tw	 = beam web thickness, in.

The strong-axis flexural strength, Mnx, can be calculated 
according to AISC Specification Section F11, with Cb = 1.84 
when the beam is braced near the end and Cb = 1.26 when 
the beam is unbraced near the end (Dowswell, 2004). These 
Cb factors are also used in Equation 48 to calculate the criti-
cal stress for the second-order torsion amplifier.

The plastic strength according to the equations in this sec-
tion are compared to the available experimental and finite 
element results in Table  1. Only nonstiffened specimens 
with no beam bracing near the connection were considered. 
The four specimens listed failed by excessive twisting of 
the plate. Rc is the shear strength calculated with the actual 
dimensions and yield strengths, Re is the approximate exper-
imental shear load where the load-deflection curve became 
nonlinear, and Ru is the maximum experimental shear load.

The last column of the table lists the test-to-calculated 
ultimate strength ratio, Ru/Rc, which has an average of 1.28 
for the four specimens. Therefore, the plastic interaction 
equation is conservative, possibly because the Wagner effect 
and the effects of strain hardening were neglected. Because 
the calculations were based on the plastic strength, nonlin-
ear behavior was expected at loads significantly below Rc; 
however, for two of the specimens, Re/Rc is greater than 1.00.

Lateral Bracing

Thornton and Fortney (2011) derived a method to predict the 
torsional resistance of extended single-plate shear connec-
tions with a slab or deck attached to the beam top flange. For 
torsional resistance, the method utilizes both the uniform 
torsion strength of the plate and the torsional resistance pro-
vided by the slab/deck flexural strength. A design method 
has not been established for the case where the beam top 
flange is restrained against lateral translation, but not rota-
tion. The equations presented in this section rely only on the 
lateral resistance of the beam bracing.
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Setting Mry  = Mpy, solving for F, and substituting into 
Equation 54 results in a torsional resistance of

	
T F

hdt

L2
b y

2

=
�

(57)

Tb can be combined with the uniform torsion strength to get 
the total torsional resistance.
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where
Tb	= �torsional resistance provided by a top flange lateral 

brace, kip-in.

h	 = distance between couple forces, F, in.

Although no interaction is assumed between the two tor-
sional components, Equation 58 is believed to be adequate 
for design purposes. The available information on flexure-
torsion interaction of rectangular members was summarized 
by Dowswell (2015); however, the interaction of torsion with 
other loads is not well understood. For example, the theory 

When lateral bracing is present at both the top and bottom 
flanges [Figure 11(a)], the eccentric torsion can be resisted 
completely by the braces. Finite element models by Abou-
Zidan (2014) and Suleiman (2013) showed that top-flange 
lateral bracing near the beam end significantly increases 
the torsional resistance of extended single-plate shear con-
nections. For cases where only top-flange bracing is pres-
ent, a portion of the eccentric torsion can be resisted with 
a couple between the brace and the centroid of the plate 
[Figure 11(b)].

	 Tb = Fh� (54)

Assuming the plate deforms in double-curvature, as 
shown in Figure  4(b), the required weak-axis moment at 
each end of the plate is

	
M
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2
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�
(55)

The resisting moment of the plate is
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Table 1.  Nonstiffened Single-Plate Connections

Reference
Spec. 
No.

t
(in.)

d
(in.)

tw
(in.)

L
(in.)

Fy
(ksi)

Rc

(kips)
Re

(kips)
Ru

(kips) Re/Rc Ru/Rc

Sherman and 
Ghorbanpoor 
(2002)

2U 0.371 15.00 0.495 6.30 42.6 71.4 65 82.9 0.910 1.16

4U 0.495 15.00 0.495 10.0 43.5 77.7 82 98.7 1.06 1.27

6UB 0.495 18.00 0.650 10.0 43.5 96.0 119 136 1.24 1.42

Abou-Zidan 
(2014)

15 0.394 9.05 0.382 6.38 50.8 43.7 36 55.1 0.82 1.26

Rc = calculated shear strength, kips
Re = the approximate experimental shear load where the load-deflection curve became nonlinear, kips
Ru = the maximum experimental shear load, kips

	 	
	 (a)  lateral bracing at top and bottom flanges	 (b)  lateral bracing at top flange

Fig. 11.  Torsional rotation at braced beam ends.
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and experiments of Neal (1950) and Witrick (1952) showed 
that the torsional stiffness remains at its elastic value after the 
member has yielded in flexure. For single-plate connections, 
contrasting results were obtained by Suleiman (2013), where 
nonlinear torsional behavior initiated at loads well below 
the corresponding yield loads based on the vertical shear-
deformation curves (Figure  12). Additionally, the research 
summarized by Dowswell (2015) showed that Equation 49 
is conservative for flexure-torsion interaction. Furthermore, 
any reduction in load due to interaction is likely to be offset 
by neglecting the Wagner torsion and warping torsion.

Only one of the finite element models by Abou-Zidan 
(2014) failed due to excessive twisting. For another model, 
failure was caused by yielding of the plate between the weld 
line and the bolt line. For both of these specimens, Tp was 
calculated with Equation 58 and the torsion ratio was com-
bined with the shear and flexure ratios according to Equa-
tion 49. The results are listed in Table 2, where it is shown 
that the equations are conservative. The last column of 
the table lists the test-to-calculated ultimate strength ratio, 
Ru/Rc, which is close to two for both specimens. With an 
average Re/Rc ratio of 1.20, the proposed equations provide 
reasonable estimates of the load causing the onset of nonlin-
ear behavior for both models.

Practical Results

This section shows the results of including torsion in the 
analysis of single plate connections. The discussions include 

connections with various configurations supporting a 
W18×35 beam, which has a web thickness, tw, of 0.300 in. 
In all cases, the plate material is ASTM A572 Gr. 50 and the 
depth, d, is 15 in.

The first results are for a conventional single-plate shear 
connection, as shown in Figure 10(a), with a plate thickness 
of t = a in. and L = 3 in. The Wagner strength, calculated 
with Equation 33 at a rotation of 0.03 rad., is 22.9 kip-in. 
Adding this to the plastic torsional strength calculated with 
Equation 42 results in a plastic torsional resistance of 120 
kip-in. The elastic uniform torsional resistance, Tuy, is 21.1 
kip-in., which is only 18% of the plastic torsional resistance 
at 0.03 rad. Using Equation 49 to combine the flexural, tor-
sional and shear loads results in a nominal shear strength of 
149 kips. For a plate with ,-in.-diameter holes, the AISC 
Manual design procedure results in a nominal shear strength 
of 146 kips, which is controlled by the shear rupture limit 
state. Because plate yielding is a key component in the rota-
tional ductility of these connections, the torsional stresses 
may actually enhance the performance. These results show 
why the common practice of neglecting torsion in the design 
of conventional single-plate shear connections is warranted.

The next results are for extended single-plate shear 
connections, as shown in Figure 10(b), with t = s  in. and 
L = 9 in. Several bracing conditions were considered: Case 1, 
unbraced beam; Case 2, beam with top-flange lateral brac-
ing near the connection; and Case 3, beam with torsional 
bracing near the connection. The AISC Manual design 
procedure results in a nominal shear strength of 161 kips; 

Table 2.  Nonstiffened Single-Plate Connections with Top-Flange Lateral Bracing

Spec. 
No.

Failure
Mode

t
(in.)

d
(in.)

tw
(in.)

L
(in.)

Fy
(ksi)

Rc

(kips)
Re

(kips)
Ru

(kips) Re/Rc Ru/Rc

11 Yielding 0.236 9.05 0.382 6.38 50.8 28.5 39 61.8 1.37 2.17

13 Twisting 0.394 9.05 0.382 6.38 50.8 54.6 56 94.4 1.03 1.73

Rc = calculated shear strength, kips
Re = the approximate experimental shear load where the load-deflection curve became nonlinear, kips
Ru = the maximum experimental shear load, kips

 

Fig. 12.  Shear-displacement and torsion-rotation curves (Suleiman, 2013).
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however, the results are valid only for beams with bracing 
located near the connection. In all cases, the Wagner torsion 
is neglected and load interaction is calculated according to 
Equation 49. The elastic uniform torsional resistance is 93.8 
kip-in.

Case 1: � Because beam bracing is not provided near the 
connection, the AISC Manual design procedure 
is not applicable. Also, this configuration can 
significantly reduce the lateral-torsional buckling 
strength of the beam. The plastic torsional strength 
calculated with Equation 42 is 202 kip-in., which 
is more than double the elastic uniform torsional 
resistance. The second-order amplification 
factor and the buckling strength of the plate were 
calculated with Cb = 1.26. The calculations resulted 
in a shear strength of 151 kips, which is 6% less 
than the strength calculated with the AISC Manual 
design procedure.

Case 2: � For this case, the plastic torsional strength can be 
calculated using either Equation 42 or Equation 58. 
The plastic torsional strength calculated with 
Equation 42 is the same as for Case 1. The plastic 
torsional strength calculated with Equation  58 is 
285 kip-in., which is three times the elastic uniform 
torsional resistance. The second-order amplification 
factor and the buckling strength of the plate were 
calculated with Cb = 1.84. The calculations resulted 
in shear strengths of 153 kips and 161 kips when 
using Equation 42 and Equation 58, respectively. In 
both cases, the result is within 5% of the strength 
calculated with the AISC Manual design procedure.

Case 3: � For this case, the torsion is resisted by the beam 
bracing system and T2  = 0, resulting in a shear 
strength of 170 kips. This is 6% greater than the 
strength calculated with the AISC Manual design 
procedure.

PROPOSED DESIGN METHOD

The design process can be simplified by limiting the sec-
ond-order amplification factor to 1.10 and solving for the 
minimum thickness required to reach the plastic flexural 
strength. Substituting B = 1.10 and Mrx = ϕMpx into Equa-
tion 44, combining with Equations 47 and 48, and solving 
for t results in Equation 59.

	
t

LdF

C E
1.54 y

b
=min

�
(59)

where
Cb	= �1.84 when the connection element is braced at both 

ends

	 = �1.26 when the connection element is braced only at 
one end

This minimum plate thickness also ensures that AISC Spec-
ification Section F11 will always result in Mnx  = Mpx for 
Cb ≥ 1.07. For t ≥ tmin, the required second-order torsional 
moment is

	 Tr = 1.1T1� (60)

Based on the design recommendations of Dowswell 
(2016), Equation 43 can be used for design by modifying the 
exponent applied to the axial load ratio and substituting the 
available strengths for plastic strengths.
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where
Mcx	= available flexural strength about the x-axis, kip-in.

	 = ϕMpx (LRFD) or Mpx/Ω (ASD)

Mcy	= available flexural strength about the y-axis, kip-in.

	 = ϕMpy (LRFD) or Mpy/Ω (ASD)

Pc	 = �available axial strength calculated according to 
AISC Specification Section J4.1(a) or Section J4.4 
for tension and compression elements, respectively, 
kips

	 = ϕPn (LRFD) or Pn/Ω (ASD)

Tc	 = available torsional strength, kips

	 = ϕTp (LRFD) or Tp/Ω (ASD)

Vc	 = �available shear strength calculated according to 
AISC Specification Section J4.2(a), kips

	 = ϕVn (LRFD) or Vn/Ω (ASD)

k	 = 1 for compression loads

	 = 2 for tensile loads

For connection elements that are braced only at one 
end and free at the other end, the nominal plastic torsional 
strength, Tp, is calculated with Equation  42. For extended 
single-plate shear connections with beam top flange lateral 
bracing near the connection, Tp can be calculated with Equa-
tion  58. For extended single-plate shear connections with 
beam lateral and torsional bracing near the connection, the 
torsional load at the plate can be neglected (Tr = 0).
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DESIGN EXAMPLES

Example 1

Given

In this example, a W21×111 beam is connected to a column web with an extended single-plate connection, as shown in Figure 13. 
The beam is not braced, but the effect of the connection on the lateral-torsional buckling strength has been considered in the 
beam design. The connection is subjected to an axial tension force, P, a vertical shear force, R, and a horizontal out-of-plane 
force, F. The plate is w-in. × 15-in. ASTM A572 Grade 50.

The vertical and horizontal forces are:

LRFD ASD

Pu = 30 kips
Ru = 60 kips
Fu = 6 kips

Pa = 20 kips
Ra = 40 kips
Fa = 4 kips

Solution

A572 Gr. 50: Fy = 50 ksi
W18×50: tw = 0.550 in.
Plate: t = w in.    d = 15 in.    L = 10 in.
Cb = 1.26
k = 2

Fig. 13.  Beam connection for Example 1.
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The required minimum plate thickness calculated with Equation 59 is:

t
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Combining Equations 50, 51 and 60, the required torsional moment, Tr , is:
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The required shear force, Vr, is:

LRFD ASD
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The required strong-axis flexural strength, Mrx, is:

LRFD ASD

M 60 kips 10 in.

600 kip-in.

ux ( )( )=
=

M 40 kips 10 in.

400 kip-in.

ax ( )( )=
=

The required weak-axis flexural strength, Mry, is:

LRFD ASD

M 6 kips 10 in.

60.0 kip-in.

uy ( )( )=
=

M 4 kips 10 in.

40.0 kip-in.

ay ( )( )=
=

The nominal axial tensile strength is:

Pn	= (50 ksi)(0.750 in.)(15 in.)
	 = 563 kips

The available axial tensile strength is:

LRFD ASD

P 0.90 563 kips

507

n ( )( )ϕ =
= kips

P 563 1.67

337
n Ω =

=
kips

kips
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Combining Equations 7 and 42, the nominal torsional strength is:
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The available torsional strength is:
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T 0.90 185 kip-in.

167 kip-in.

p ( )( )ϕ =
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T 185 kip-in. 1.67

111
p Ω =

= kips

The nominal shear strength is:

Vn	= (0.6)(50 ksi)(0.750 in.)(15 in.)
	 = 338 kips

The available shear strength is:

LRFD ASD

V 1.00 338
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The nominal strong-axis flexural strength is:
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The available strong-axis flexural strength is:
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1,900 kip-in.

nx ( )( )ϕ =
=

M 2,110 kip-in. 1.67
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The nominal weak-axis flexural strength is:
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The available weak-axis flexural strength is:

LRFD ASD

M 0.90 105 kip-in.

94.5 kip-in.

ny ( )( )ϕ =
=

M 105 kip-in. 1.67

62.9 kip-in.
ny Ω =
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For LRFD, interaction according to Equation 61 is:
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For ASD, interaction according to Equation 61 is:
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Example 2

Given

During erection of the W21 beam in Example 1, a field correction requires the beam to be moved 2 in. horizontally, perpendicu-
lar to the beam axis. If a 2-in. filler plate is installed between the w-in. plate and the beam web, is the plate strength adequate?

Solution

The eccentricity increases to:

e
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The required torsional moment, Tr, increases to:
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For LRFD, interaction according to Equation 61 is:
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For ASD, interaction according to Equation 61 is:
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Fig. 14.  Horizontal brace connection for Example 3.

Example 3

Given

In this example, a gusset plate connects a WT horizontal brace to a roof beam and a truss top chord. Figure 14 shows the connec-
tion rotated into the roof plane. Both the brace and the roof beam are in the roof plane, which is sloped at 20° from horizontal, 
and the chord web is in the horizontal plane. Because the chord is rotated 20° relative to the gusset plate, the gusset-to-chord 
interface has been detailed with a skewed end plate welded to the gusset plate. The end plate is 1-in. × 18-in. ASTM A572 Grade 
50. The brace component parallel to the truss chord, PL, is transferred into the chord, and the component perpendicular to the 
chord, PT, is transferred into the roof beam. Because the bracing work point is located at the chord centroid, the chord was 
designed assuming concentric axial loading; therefore, PL must be transferred to the work point at the chord centroid. For static 
equilibrium of the connection, the 1-in. end plate is subjected to both flexure and torsion. Only the end plate at the gusset-to-
chord interface will be designed in this example.
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Solution

The brace component parallel to the truss chord axis is:

LRFD ASD

PuL = 50.0 kips PaL = 33.3 kips

A572 Gr. 50: Fy = 50 ksi
Plate: t = 1 in.    d = 15 in.    L = 5.73 in.
Cb = 1.84

The required minimum plate thickness calculated with Equation 59 is:

	

t
LdF

C E
1.54

1.54
5.73 in. 15 in. 50 ksi

1.84 29,000 ksi

0.284 . 1 .

y

b

( )( )( )
( )( )

=

=

= < o.k.in in

min

�

(59)

The moment in the roof plane is PL multiplied by the eccentricity in the roof plane, which is the distance from the work point to 
the faying surface between the chord flange and the 1-in. end plate.

LRFD ASD

M 50 kips 8.73in.

437 kip-in.

ui ( )( )=
=

M 33.3 kips 8.73 in.

291 kip-in.

ai ( )( )=
=

The required strong-axis flexural strength of the end plate, Mrx, is:

LRFD ASD

M 437 kip-in. sin 20°

149 kip-in.

ux ( ) ( )=
=

M 291 kip-in. sin 20°

99.5 kip-in.

ax ( ) ( )=
=

The first-order torsional moment in the end plate is:

LRFD ASD

T 437 kip-in. cos 20°

411 kip-in.

u1 ( ) ( )=
=

T 291 kip-in. cos 20°

273 kip-in.

a1 ( ) ( )=
=

The required second-order torsional strength of the end plate, Tr, is:

LRFD ASD

T 1.1 411 kip-in.

452 kip-in.

u ( )( )=
=

T 1.1 273 kip-in.

300 kip-in.

a ( )( )=
=

The required shear strength of the end plate, Vr, is:

LRFD ASD

Vu = PuL = 50.0 kips Va = PaL = 33.3 kips
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Fig. 15.  Free-body diagram of 1-in. end plate.

These loads are shown on the free-body diagram in Figure 15.

Combining Equations 7 and 42, the nominal torsional strength is:

T
0.6 50 ksi 1 in. 18 in.

2
1

18 in.

2.4 5.73 in.

623 kip-in.

p

2( )( ) ( )
( )

( )
( )

= +
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

The available torsional strength is:

LRFD ASD

T 0.90 623 kip-in.

561 kip-in.

p ( )( )ϕ =
=

T 623 kip-in. 1.67

373 kips
p Ω =

=

The nominal shear strength is:

Vn	= (0.6)(50 ksi)(1 in.)(18 in.)
	 = 540 kips

The available shear strength is:

LRFD ASD

V 1.00 540 kips

540 kips

n ( )( )ϕ =
=

V 540 kips 1.50

360 kips
n Ω =

=

The nominal strong-axis flexural strength is:

M 50 ksi
1 in. 18 in.

4

4,050 kip-in.

nx

2

( )
( )( )

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

The available strong-axis flexural strength is:

LRFD ASD

M 0.90 4,050 kip-in.

3,650 kip-in.

nx ( )( )ϕ =
=

M 4,050 kip-in. 1.67

2,430 kip-in.
nx Ω =

=
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SYMBOLS

B	 Amplification factor for second-order torsional 
effects

Cb	 Lateral-torsional buckling modification factor

Cw	 Warping constant, in.6

E	 Modulus of elasticity, ksi

F	 Horizontal couple force, kips

Fcr 	 Critical stress, ksi

Fy	 Specified minimum yield strength, ksi

Fwy	 Horizontal couple force required to initiate first 
yield, kips

G	 Shear modulus of elasticity = 11,200 ksi

Ie	 Moment of inertia for the equivalent beam, in.4

In	 Wagner constant, in.6

J	 Torsional constant, in.4

L	 Member length, in.

Mcr	 Elastic critical buckling moment for strong-axis 
flexure, kip-in.

Mcx	  Available flexural strength about the x-axis, kip-in.

Mcy	 Available flexural strength about the y-axis, kip-in.

Mnx	 Strong-axis flexural strength, kip-in.

Mp	 Plastic flexural strength, kip-in.

Mpe	 Plastic flexural strength of the equivalent beam, 
kip-in.

Mpx	 Plastic flexural strength about the x-axis, kip-in.

CONCLUSIONS

The torsional strength of connection elements can be attrib-
uted to the resistance due to uniform torsion, warping tor-
sion, and the Wagner effect. For long members subjected to 
reasonable torsional rotations, the contribution of both the 
warping and Wagner torsions are negligible. However, for 
short members and connection elements, their effect can 
be significant. If only the elastic uniform (Saint Venant) 
torsion is considered, the resistance can be significantly 
underestimated.

For many connection elements, this investigation showed 
that the torsional strength can be defined as the sum of the 
plastic uniform torsion strength and the plastic warping 
strength. For long connection elements, such as extended 
single-plate connections, the Wagner torsional resistance 
is negligible at reasonable service rotation limits. However, 
the Wagner resistance is significant for short connection ele-
ments such as conventional single-plate connections, allow-
ing torsional effects to be neglected for these connections.

A method has been proposed for the ultimate strength 
design of rectangular connection elements subjected to any 
possible combination of loads, including torsion. The design 
method results in a significant increase in torsional strength 
compared to traditional analysis methods. Several design 
examples showed the proper application of the proposed 
design method.

For nonstiffened extended single-plate connections, the 
design procedure in the AISC Manual (AISC, 2017) implic-
itly limits excessive torsional rotations. For connections 
subjected only to shear loads, the proposed design method 
results in strengths similar to the AISC Manual procedure 
by explicitly considering torsional effects. The proposed 
method can also be used to analyze extended single-plate 
connections subjected to axial forces and out-of-plane forces.

For LRFD, interaction according to Equation 61 is:

	

452 kip-in.

561 kip-in.

50.0

540

149 kip-in.

3,650 kip-in.

0.690 1.0

2 4⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+

= < o.k.

kips

kips

�

(61)

For ASD, interaction according to Equation 61 is:

	

300 kip-in.

373 kip-in.

33.3

360

99.5 kip-in.

2,430 kip-in.

0.688 1.0

2 4⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+

= < o.k.

kips

kips

�

(61)
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Mpy	 Plastic flexural strength about the y-axis, kip-in.

Mre	 Required moment for the equivalent beam, kip-in.

Mrx	 Required x-axis flexural strength, kip-in.

Mry	 Required y-axis flexural strength, kip-in.

Mye	 Yield moment of the equivalent beam, kip-in.

Pc	 Available axial strength, kips

Pr	 Required axial strength, kips

Py	 Axial yield load, kips

Rr	 Required beam end shear reaction, kips

Rc	 Calculated shear strength, kips

Re	 Approximate experimental shear load where the 
load-deflection curve became nonlinear, kips

Ru	 Maximum experimental shear load, kips

Sx	 Elastic section modulus about the x-axis, in.3

T1	 First-order torsional moment, kip-in.

T2	 Second-order torsional moment, kip-in.

Tb	 Torsional resistance provided by a top flange lateral 
brace, kip-in.

Tc	 Available torsional strength, kips

Te	 Sum of the Wagner torsional moment and the 
uniform torsional moment, kip-in.

Tn	 Wagner torsional moment, kip-in.

Tp	 Plastic torsional moment, kip-in.

Tr	 Required torsional moment, kip-in.

Tu	 Uniform torsional moment, kip-in.

Tup	 Plastic uniform torsional moment, kip-in.

Tuy	 First-yield uniform torsional moment, kip-in.

Tw	 Warping torsional moment, kip-in.

Twi	 Inelastic warping torsional moment, kip-in.

Twp	 Plastic warping torsional moment, kip-in.

Twy	 First-yield warping torsional moment, kip-in.

Vc	 Available shear strength, kips

Vp	 Plastic shear strength, kips

Vr	 Required shear strength, kips

Wnc	 Normalized warping function at the corner of the 
cross section, in.2

a	 Constant as defined by Equation 15, in.

c	 Distance to outermost fiber, in.

d	 Member depth, in.

e	 Horizontal eccentricity for a single-plate connection, 
in.

h	 Distance between couple forces, F, in.

k	 Exponent applied to the axial load ratio

t	 Member thickness, plate thickness, in.

tw	 Beam web thickness, in.

z	 Distance along the member length, in.

αd	 Effective depth of the equivalent cross section, in.

β	 Normalized increase in torsional resistance due to 
the Wagner effect

δ	 Deflection of equivalent beam

δy	 Yield deflection of equivalent beam

τy	 Shear yield stress = 0.6Fy, ksi

θ	 Angle of rotation, rad

θi	 Inelastic angle of rotation, rad

θu	 Angle of rotation for uniform torsion, rad

θuy	 First-yield angle of rotation for uniform torsion, rad

θw	 Angle of rotation for warping, rad

θwy	 First-yield angle of rotation for warping, rad

θ1	 First-order torsional rotation, rad

θ2	 Second-order torsional rotation, rad

θ′	 Angle of rotation per unit length, first derivative of θ 
with respect to z, rad/in.

θ′′	 Second derivative of θ with respect to z, rad/in.2

θ′′′	 Third derivative of θ with respect to z, rad/in.3

σn	 Axial stress developed by the Wagner effect, ksi

σnt	 Maximum axial stress developed by the Wagner 
effect, ksi

σwc	 Maximum warping normal stress, ksi
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