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INTRODUCTION

D eep steel beams (i.e., plate girders) have thin webs and 
are commonly used in steel construction for buildings 

but most notably in bridges. The design of these elements 
is often controlled by the shear strength of the slender web 
plate. Web plates that elastically buckle due to shear load 
still possess a significant amount of post-buckling shear 
strength. Post-buckling capacity is utilized in the design 
of many bridge girders due to high web slenderness, which 
is necessitated by large girder depths and weight/material 

savings. This post-buckling behavior has attracted the atten-
tion of researchers and engineers since the 1880s (e.g., Basler, 
1961; Wagner, 1931; Wilson, 1886). Since 1931, more than a 
dozen proposals have been developed to explain and predict 
the post-buckling shear strength of thin webs in plate girders 
(e.g., Höglund, 1997; Porter et al., 1975). A detailed discus-
sion of the differences between several of the aforemen-
tioned proposals is provided by White and Barker (2008). 
Despite these numerous proposals, the true mechanics and 
post-buckling behavior are still not fully understood, partic-
ularly the contributions of the compression field and vertical 
stiffeners to the ultimate post-buckling shear strength.

Previous publications have provided extensive discus-
sions on the various proposed plate shear buckling models 
throughout the literature (Ziemian, 2010; White and Barker, 
2008; Yoo and Lee, 2006), and all the models are based on 
tension field action. Tension field theory posits that the main 
source of this post-buckling shear strength is the develop-
ment of tensile stresses in a defined diagonal field, which is 
mobilized after the onset of elastic shear buckling. Recent 
research, however, has shown that the fundamental assump-
tions upon which tension field action is based do not rep-
resent the full mechanical response of web shear buckling 
(Yoo and Lee, 2006; Glassman and Garlock, 2016; Jha, 
2016).
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ABSTRACT

Thin (slender) steel plates possess shear strength beyond the elastic buckling load, which is commonly referred to as the post-buckling 
capacity. Semi-empirical equations based on experimental tests of plate girders have been used for decades to predict the ultimate post-
buckling strength of slender webs. However, several recent studies have shown that the current models for predicting the ultimate shear 
post-buckling capacity of thin plates are based on some incorrect assumptions regarding their mechanical behavior. As a result, the current 
design equations provide an approximate estimate of capacity for the range of parameters in the test data upon which they are founded. This 
paper explores the fundamental behavior of thin plates under pure shear. Such a fundamental examination of shear post-buckling behavior in 
thin plates is needed to enable design procedures that can optimize a plate’s shear strength and load-deformation performance for a wider 
range of loading and design parameters. Using finite element analyses, which are validated against available results of previous experimental 
tests, outputs such as plastic strains, von Mises stresses, principal stresses, and principal stress directions are examined on a buckled plate 
acting in pure shear. The internal bending, shear, and membrane stresses in the plate’s finite elements are also evaluated. In this study, these 
evaluations are performed for a simply supported plate with an aspect ratio equal to 1.0 and slenderness ratio equal to 134. Results show that 
localized bending in the plates due to the out-of-plane post-buckling deformations appear to be a significant factor in the ultimate shear post-
buckling capacity of the plate. Also, the compressive stresses continue to increase beyond the onset of elastic buckling in some regions of the 
plate, contrary to current design assumptions. Overall, this study provides new insights into the mechanics of shear post-buckling behavior 
of thin plates that can be exploited for design procedures that are consistent with mechanical behavior.
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In addition, the current AISC Specification (2016) rec-
ognizes that the vertical stiffener does not carry the full 
vertical component of the tension field force. In previous 
editions, this stiffener was designed for an area consistent 
with the assumed vertical component of the tension field 
force, whereas it is currently designed for flexural stiffness 
only. This change rightly recognizes that the vertical stiff-
ener provides lateral stiffness to define the web paneliza-
tion—it does not act as an anchor for the tension field. As 
noted in the AISC Specification Commentary: “…trans-
verse stiffeners in I-girders designed for shear post-buckling 
strength, including tension field action, are loaded predomi-
nantly in bending due to the restraint they provide to lateral 
deflection of the web. Generally, there is evidence of some 
axial compression in the transverse stiffeners due to the ten-
sion field, but even in the most slender web plates permitted 
by the AISC Specification, the effect of the axial compres-
sion transmitted from the post-buckled web plate is typically 
minor compared to the lateral loading effect. Therefore, the 
transverse stiffener area requirement from prior AISC Spec-
ifications is no longer specified” (AISC, 2016). However, 
the design equations that predict the post-buckling capac-
ity are still based on the original tension field design pro-
cedures. Using the current approach, the load path for the 
tension field action is, therefore, incomplete—the vertical 
component of the diagonal tension field must be resolved 
via a different mechanism. The study presented in this paper 
provides, for the first time, insights to the behavior of thin 
web plates that, with more investigation, can lead to updated 
design recommendations that include a completed load path.

This paper explores the fundamental behavior of thin 
plates under pure shear. Using validated finite element 
analyses, outputs such as plastic strains, von Mises stresses, 
principal stresses, and principal stress directions are exam-
ined on the buckled plate. The through-thickness bending 
and membrane stresses in the plate elements are also evalu-
ated. These evaluations are performed for a plate with an 
aspect ratio equal to 1.0 and slenderness ratio equal to 134. 
Examining this single case provides novel insights into plate 

shear buckling behavior that will be used as a basis for future 
work, which will examine a wider range of plate parameters.

FINITE ELEMENT MODEL

The plate used for this study is based on standard plans for 
typical steel girder highway bridges specified by the Federal 
Highway Administration (FHWA, 1982). A 90-ft (27.4-m) 
span design was used as a prototype, where the depth, D, 
equals 58 in. (1473 mm) and the web thickness, tw, equals 
v  in. (11  mm). In practice, many of these girders are 
designed with a transverse stiffener spacing, a, greater than 
D; however, in this study we assume a = D. Future work will 
examine other stiffener spacings. The steel was modeled 
with a yield stress equal to 50 ksi (345 MPa), a modulus of 
elasticity equal to 29,000 ksi (200 GPa), and Poisson’s ratio 
equal to 0.3. It will be shown that the steel remained in the 
elastoplastic region for the range of strains encountered in 
the analyses (well before strain-hardening occurs).

The finite element (FE) model was developed in the soft-
ware Abaqus (Dassault Systemes, 2011) using the simply 
supported boundary conditions shown in Figure 1. Note that 
the boundary conditions used here represent an approxima-
tion of the actual boundary conditions and may incorporate 
flanges and stiffeners, each of varying stiffness. To achieve 
perfectly symmetric stress results, the boundary conditions 
used by the authors differ only slightly from those used 
by Glassman and Garlock (2016), which restrained the 
Y-translation on the left side instead of applying a load. The 
elastic critical shear buckling load, Vcr, and the ultimate 
post-buckling shear load, Vu, are not affected by this slight 
modification in boundary condition.

Yoo and Lee (2006) used boundary conditions that were 
different from both configurations mentioned earlier. In their 
studies, the z-direction translation is free on all four sides. 
Such a boundary condition represents a lower-bound solu-
tion for Vu. The current study’s boundary conditions assume 
axially rigid flanges and are thus closer to an upper-bound 
solution. All boundary conditions discussed here result in 

Fig. 1. Boundary conditions of the FE model (left), and mesh density in first mode 
buckled shape (right). Location 3 is a point (Pt) on the upper left corner.
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the same Vcr. Comparing Vu using the Yoo and Lee (2006) 
boundary conditions to that produced by the current study’s 
boundary conditions (Figure 1), one obtains Vu values equal 
to 437 kips and 593 kips, respectively, when analyzing the 
prototype plate. The current study’s results match those 
of Glassman and Garlock (2016), which correlated well to 
experimental results (as will be discussed later in this paper). 
The authors, therefore, proceed with the boundary condi-
tions of Figure 1 for the remainder of this paper.

The thin plate was meshed using S4 shell elements (dou-
bly curved, general-purpose, finite membrane strains) with 
four integration points on the surface, as shown in Figure 2. 
A preliminary study was conducted to determine an appro-
priate number of section points through the depth, in which 
three, five, seven, and nine section points at each surface 
integration point were evaluated by examining stress val-
ues and shear load sustained at V = Vu. The results for five, 
seven, and nine section points differed by less than 1%, and 
five section points as shown in Figure 2 are therefore used 
for all other analyses discussed in this paper.

To capture the plate transition from its initial unbuckled 
state to post-buckling behavior to ultimate shear strength, 
nonlinear analyses were conducted using a modified Riks 
procedure. These analyses require the insertion of an initial 
geometric imperfection to perturb the mesh prior to load-
ing, which allows the load-displacement curve to proceed 
beyond the buckling bifurcation point and progress into the 
post-buckled behavior until Vu is reached (Glassman and 
Garlock, 2016). To create this initial geometric imperfec-
tion, the eigenmode shape associated with the lowest elastic 
positive eigenvalue is multiplied by a defined scale factor. 
Previous research by Garlock and Glassman (2014) found 
that a scale factor of D/10,000 was sufficient for these mod-
els, and this scale factor was therefore selected for the pres-
ent study. Mesh convergence studies were conducted using 
an eigenvalue extraction analysis. The final mesh selected is 

shown in Figure 1 and is equal to 37 × 37 elements [approxi-
mately 1.57 in. (40 mm) square each].

Using this approach, the FE solution for the elastic shear 
buckling load, Vcr, equaled 345 kips (1535 kN). This value 
has less than 1% error compared to a theoretical solution of 
343 kips (1526 kN), which is obtained from Equation 1:
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(1)

In Equation 1, τcr is the elastic shear buckling stress, E
is Young’s modulus, ν is Poisson’s ratio, D is the depth of 
the plate, tw is the plate thickness, and k is the elastic shear 
buckling coefficient. The value of k is a function of the span-
to-depth (aspect) ratio (a/D) of the plate and the boundary 
conditions applied to its edges (Timoshenko and Gere, 
1961). For a plate with a/D = 1 and simply supported on all 
four edges, k = 9.34. D/tw is the slenderness ratio, which is a 
measure of how susceptible the plate girder is to web shear 
buckling. The elastic critical shear buckling load, Vcr, is cal-
culated by multiplying Equation 1 by D × tw.

The modeling approach described earlier has also been 
validated via comparison to experimental test data for vari-
ous a/D and D/tw ratios. Glassman and Garlock (2016) con-
sidered the results of 16 previous experiments whose results 
are published in Basler et al. (1960), Bergfelt and Hovik 
(1968), Kamtekar et al. (1972), Rockey and Skaloud (1972), 
Evans et al. (1977), and Narayanan and Rockey (1981). 
Glassman and Garlock’s (2016) FE models used the same 
setup conditions as discussed earlier and showed very close 
agreement with the ultimate post-buckling shear capacity, 
Vu, of each plate. Specifically, the FE models predicted Vu

values to within ∼10% of the published experimental values 
with one exception where the flange-to-web thickness ratio 
(tf/tw) was quite large compared to other tests (thus influenc-
ing that plate’s boundary conditions more so than the other 
validation cases).

RESULTS

Sign Conventions and Definitions

To properly interpret the finite elements results, the defi-
nitions and sign conventions of the stresses, moments and 
rotations are defined in this paper as follows, in the context 
of the Abaqus output:

• Tensile stresses are positive and compressive stresses are 
negative.

• SP:1 and SP:5 refer to the section points on the two 
surfaces of the plate as shown in Figure 2.

• The element stresses, σ1, σ2 and σ12 are defined in 
Figure 3(a) in the positive direction.

Fig. 2. Integration points and section 
points on each shell finite element.
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• Maximum principal stresses (σmax) are the maximum 
positive value, thus typically corresponding to maximum 
tensile stresses. If no tension is present, the value will be 
negative, thus corresponding to the minimum compressive 
value [see Figure 3(b)].

• Minimum principal stresses (σmin) are the maximum 
negative value, thus typically corresponding to maximum 
compressive stresses. If no compression is present, the 
value will be positive, thus corresponding to the minimum 
tensile value [see Figure 3(b)].

• Von Mises stresses are defined for the principal plane 
stress condition defined by Equation 2, where σy is the 
yield stress. Figure 4 plots this yield surface.

σ2
y = σ2

max + σ2
min − σmaxσmin (2)

Figure 5 shows the shear force-deformation plot with Vcr

and Vu for this plate labeled for clarity. Deformation is mea-
sured at the lower right corner of the plate as shown by the 
dot in the inset figure. Note that the plot can be divided into 
three phases of shear loading. Phase I represents the elastic 
state prior to buckling. In phase II, the plate has exceeded 
Vcr but still exhibits nearly linear behavior. In phase III, the 
plate’s force-deformation behavior becomes highly nonlin-
ear. For this plate, the boundary between phases II and III 
lies approximately at the shear halfway between Vcr and Vu. 
In the following sections, the stresses and strains throughout 
the plate will be evaluated at two values of loading: (1)  in 
phase II at V = 1.15 × Vcr (when the plate has recently buck-
led) and (2) in phase III at Vu (when the plate has reached its 
peak shear load during post-buckling response).

Ultimate Shear Post-Buckling Load, Vu, and 
Deformation

Figure 6 illustrates the final deformed shape at the ultimate 
(post-buckling) shear load, Vu, that, for this plate, equals 593 
kips (2636 kN). The out-of-plane deformations are mani-
fested in three half-wavelengths or bulges from point B to 
point D. The surface shown in Figure 6 represents the SP:5 
face from Figure 2. Therefore, along the “tension field” (from 

point A to point C, where the red color represents maximum 
out-of-plane positive displacement), it will be shown that the 
SP:5 stresses will be in tension and SP:1 stresses will be in 
compression due to the significant bending in the plate. Con-
versely, in Figure 6, where the dark blue color shows large 
negative displacement, SP:5 stresses will be in compression 
and SP:1 stresses will be in tension. A thorough analysis of 
the stresses will be discussed in sections to follow, where 
it will be shown that the plate bending due to this post-
buckling out-of-plane deformation dominates the response 
when Vu is reached.

Plate Behavior Just after Elastic Buckling

Before the plate reached the elastic shear buckling load Vcr, 
the FE results were consistent with the theoretical behav-
ior of a plate under pure shear: The angle of the principal 
stress, θp, was 45°, and the principal stresses in tension and 
compression (σmax and σmin, respectively) were equal and 
opposite to one another and also equal to the shear stress 
[V/(D × tw), where V is the applied load]. Note that Abaqus 
does not output θp—this value was derived using σ1, σ2 
and σ12 with the well-established equation based on Mohr’s 
circle. In this section, the state of the plate when the shear 
V  = 1.15  × Vcr (i.e., near the beginning of post-buckling 
behavior) is examined to enable a comparison to ultimate 
post-buckling behavior when Vu is reached. The following 
behavior is observed:

• Principal stress direction, θp: Figure  7 plots the θp 
contours for V/Vcr = 1.15. It can be seen that this angle 
has not changed significantly from the pre-buckling state 
when this angle was 45°.

Fig. 4. Von Mises yield surface.

 (a) (b)

Fig. 3. (a) Positive stresses on element; (b) principal 
stresses and principal stress direction (with 

Abaqus sign convention in parentheses).
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• Principal stresses: Figure  8 plots the σmin and σmax

contours for V/Vcr  = 1.15. None of these stresses have 
reached yield (50 ksi, 345 MPa), and the magnitude of 
σmin (compressive principal stress) is comparable to that 
of σmax (tension principal stress). At an elastic buckling 
load of 344 kips (1532 KN), the elastic buckling stress 
theoretically equals 13.7 ksi (95 MPa). At V = 1.15 × Vcr, 
Figure  8 shows that both σmin and σmax have generally 
increased beyond 13.7 ksi.

• Von Mises stresses: Figure  9 plots the von Mises stress 
contours for V/Vu  = 1.15. As would be expected, the 
stresses are shown to be well below yield (50 ksi).

Though the contour patterns are similar, Figures  7, 8 
and 9 all show some variation in the magnitudes of plotted 
results between the SP:1 and SP:5 faces of the plate. More 
significant levels of variation are shown for the principal and 
von Mises stresses in Figures 8 and 9. The stress patterns 
on the opposing SP:1 and SP:5 faces highlight the emer-
gence of bending moment through the thickness of the post-
buckled plate in addition to in-plane stress. These moments 
are caused by second-order bending due to in-plane compres-
sion of the buckled plate. Each of the three half-wavelengths 
of this prototype’s buckled shape experiences “bulging” as 
the top right and bottom left corners of the plate (from B to 

Vertical Displacement at bottom right corner (in.)

Fig. 5. Shear displacement of the plate, with Vcr and Vu labeled.

Fig. 6. Deformed shape contour at Vu, with out-of-plane deformation plot superimposed (dark black line). 
The face shown (front face) corresponds to SP:5; the back face (not shown) corresponds to SP:1 (see Fig. 2).
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D in Figure 6) are pushed closer together by the pure shear 
force.

Plate Behavior at the Ultimate Shear 
Post-Buckling Load, Vu

The following observations are made regarding the stress 
state of the plate when the shear, V, equals the ultimate shear 
post-buckling load, Vu = 593 kips (2636 kN).

• Principal stress direction, θp: Figure  10 plots the θp

contours for V = Vu. It can be seen that this angle is no 
longer ∼45° and now varies between 15° and −65°. Also, 
the values are now significantly different on each face 
(SP:1 and SP:5) because the principal stresses are also 
different on each face. θp is shown to be largely dependent 
on the out-of-plane post-buckled deformation.

• Principal stresses: Figure  11 plots the σmin and σmax

contours for V  = Vu. Both σmin and σmax have reached 
yield in the regions marked by the bold lines encircling 
gray shading. The magnitudes, signs (positive, negative) 
and locations of these stresses are related to the out-of-
plane post-buckled deformation (and bending) of the plate 
at Vu as seen previously in Figure 6. The σmax contours 
for SP:5 in Figure 11 show a distinct band of yielding in 
the tension field direction, which generally supports the 
assumptions in the current state of practice. However, 
the σmax contours for SP:1 show much lower maximum 
stress (actually remaining negative in compression) in 

this same region due to bending. The σmin stresses at yield 
are located along the tension field for SP:1 and along two 
smaller bands that are parallel to the tension field at SP:5. 
These stresses represent the compression face of bending 
in the buckled half-wavelength bulges along the diagonal. 
The emergence of these large compressive stresses on the 
SP:1 face indicates that the large tensile stresses in the 
tension field on the SP:5 face are caused by a combination 
of in-plane stress and second-order bending.

• Von Mises stresses: Figure 12 plots the von Mises stress 
contours for V = Vu. Nearly the entire plate surface has 
reached the von Mises yield condition (at 50 ksi, again 
shown with bold lines and gray shading) on both faces. 
At ultimate shear, the plate experiences a near saturation 
of von Mises yielding due to the combination of internal 
forces that develops in its buckled shape. Figure 12 shows 
that face SP:5 experiences a more widespread saturation 
of von Mises yielding than SP:1, which has a distinct band 
of yielding along the tension field diagonal and two other 
“pockets” of yield parallel to it. Note that bending-induced 
compression stress has caused von Mises yielding in the 
tension field diagonal on face SP:1 rather than in-plane 
tensile stresses. This deviates from the current state of 
practice, which assumes in-plane stress to be the primary 
contributor to reaching ultimate shear capacity.

• Equivalent plastic strains: Figure  13 plots (for V  = Vu) 
the equivalent plastic strains normalized by the yield 

 (a) (b)

Fig. 7. Principal stress direction, θp, for V/Vcr = 1.15 in degrees: (a) = SP:1; (b) = SP:5 (see Figs. 2, 3).
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 (a) (b)

 (c) (d)

Fig. 8. Principal stresses σmin (a; b) and σmax (c; d) for V/Vcr = 1.15 (ksi): (a), (c) = SP:1; (b), (d) = SP:5 (see Figs. 2, 3).
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 (a) (b)

Fig. 9. Von Mises stresses for V/Vcr = 1.15 (ksi). (a) = SP:1; (b) = SP:5 (see Figs. 2, 3, 4).

 (a) (b)

Fig. 10. Principal stress direction, θp, for V = Vu in degrees: (a) = SP:1; (b) = SP:5 (see Figs. 2, 3).
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 (a) (b)

 (c) (d)

Fig. 11. Principal stresses σmin (a; b) and σmax (c; d) for V = Vu (ksi). (a), (c) = SP:1; (b), 
(d) = SP:5 (see Figs. 2, 3). Gray-shaded regions represent areas that have reached yield.
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 (a) (b)

Fig. 12. Von Mises stresses for V = Vu (ksi): (a) = SP:1; (b) = SP:5 (see Figs. 2, 4). 
Gray-shaded regions represent areas that have reached yield.

 (a) (b)

Fig. 13. Equivalent plastic strains normalized by yield strain (εy = 0.001725) for V = Vu: (a) = SP:1; (b) = SP:5.
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 (a) (b)

Fig. 14. Plot of axial and bending stresses in the σ1 direction through the plate thickness for V = Vu: (a) representative 
stresses along tension field; (b) = representative stresses outside of tension field (near-upper-right and lower-left corners).

strain (εy = 0.001725) to provide a relative measurement 
of ductility utilization. This value quantifies the plastic 
strain as related to von Mises plasticity. When comparing 
to Figure  12, it can be seen that these strain values are 
greater than zero only where yield has been reached. In 
the tension field region, the equivalent plastic strains are 
larger than 2 × εy on one face and just slightly greater than 
εy on the other face. The material model assumes strain 
hardening begins at a strain value equal to 0.02. From 
Figure 12, it can be inferred that the strains in the plates 
are well below this value.

Bending Stresses at the Ultimate Shear 
Post-Buckling Load, Vu

The results presented thus far indicate that bending through 
the thickness of the plate due to post-buckled out-of-plane 
deformations has a large effect on the stress distribution. In 
this section, the axial stress is distinguished from the bend-
ing stress for both σ1 and σ2 (see Figure  3). The stresses 
are output at the five section points (SPs; i.e., the through-
thickness integration points) through the shell element thick-
ness (see Figure 2). Abaqus outputs the total stress and the 
average section stress (i.e., membrane axial stress) at each 
SP. The bending stress is calculated by subtracting the mem-
brane stress from the total stress.

Figure  14 presents the axial (in-plane) and bending 
(second-order) stresses through the plate thickness for 
V = Vu (ksi). Figure 14(a) represents stress patterns typically 
seen along the tension field. These stresses are nearly lin-
ear through the depth and become slightly nonlinear at the 
top and bottom surface, where the stresses, considering von 
Mises plasticity, have reached yield. Figure 14(b) represents 
stress patterns typically seen outside of the tension field 
(near-upper-right and lower-left corners). In these regions, 

the stresses are linear through the depth and smaller than 
those in the tension field.

Figure 15 presents the axial stress (top row) and bending 
stress at SP:1 and SP:5 (middle and lower rows) for both σ1

(left column) and σ2 (right column). It is clearly seen that 
bending stresses dominate because their magnitudes are 
nearly two times larger than axial stress for σ1 and on the 
order of 10 times larger for σ2. These plots clearly show that 
second-order moment in the post-buckled shape makes a sig-
nificant contribution to the onset of ultimate shear capacity.

Figure 16 provides additional illustration of the bending 
in the plate by plotting σmin and σmax at the shell element in 
the center of the plate against the vertical plate displacement 
at the bottom corner for both SP:1 and SP:5. The point of 
elastic shear buckling when Vcr is reached is clearly shown 
where SP:1 and SP:5 bifurcate for both σmin and σmax. This 
increasing divergence clearly indicates the onset of second-
order bending moment through the thickness of the plate. 
At Vu, SP:1 and SP:5 are significantly different for both σmin

and σmax.

Membrane Stresses at the Ultimate Shear 
Post-Buckling Load, Vu
It is worthwhile to observe the influence of stresses inde-
pendent of bending effects. Thus, this section discusses the 
membrane stresses (i.e., the axial stresses), which are equal 
to the membrane forces divided by the plate thickness. Fig-
ure 17 plots the membrane stresses along the diagonal direc-
tions of the compression and tension paths (at −45° and +45°, 
respectively) when the shear load equals Vu. Figure  17(a) 
marks with a thick bold line the 13.7-ksi (95-MPa) contour, 
which represents the stress at the elastic shear buckling 
load, Vcr. Inside the dark bold line, stresses are at or below 
13.7 ksi, while outside of this region compressive stresses 
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 (a) Axial stress—for σ1 direction (b) Axial stress—for σ2 direction

 (c) Bending stress—for σ1 direction; SP:1 face (d) Bending stress—for σ2 direction; SP:1 face

Fig. 15(a–d). Axial and bending stresses for V = Vu (ksi). Left figures are for σ1 and right are for σ2.

027-046 _EJQ119_2017-22R.indd   38 12/6/18   3:49 PM



ENGINEERING JOURNAL / FIRST QUARTER / 2019 / 39

(e) Bending stress—for σ1 direction; SP:5 face (f) Bending stress—for σ2 direction; SP:5 face 

Fig. 15(e–f). Axial and bending stresses for V = Vu (ksi). Left figures are for σ1 and right are for σ2.

Fig. 16. σmin and σmax for the shell element in the center of the plate on both surfaces 
SP:1 and SP:5. Elastic shear buckling, Vcr, and ultimate shear post-buckling, Vu, are labeled.
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 (a) (b)

Fig. 17. (a) Compressive and (b) tensile membrane stresses (ksi) at Vu acting along the 45° diagonal directions shown.

reach up to 26 ksi. This figure illustrates that compression 
continues to grow beyond Vcr, which is contrary to tension 
field theory assumption. Yoo and Lee (2006) have similarly 
shown that compression stresses will increase beyond elastic 
buckling, predominantly along the edges of the web panel. 
Figure 17(b) shows that tension stresses range from 24 to 40 
ksi; the tension field has a stiffer load path as illustrated in 
the conceptual sketches in Figure 17, which translates into 
larger stresses.

Figure  18 plots the diagonal membrane stresses versus 
shear load for every element along the corner-to-corner 
diagonal of the tension path [Figure 18(a)] and compression 
path [Figure 18(b)]. One curve is plotted for each element, 
and because the results are perfectly symmetrical, it appears 

as though only half the elements on each diagonal are plot-
ted. The orange curves represent the elements that are inside 
of the bold black contour of Figure 17(a)—that is, with com-
pressive stresses equal to or less than 13.7 ksi at Vu. Green 
lines represent the elements that fall outside of this region. 
Figure  18(a) shows that all of the elements in the tension 
diagonal continue to increase beyond the 13.7 ksi reached 
at Vcr.

Figure 18(b) shows that after elastic buckling, compres-
sive stresses continue to increase for all elements along the 
compression diagonal. An overall reduction in the rate of 
stress increase is observed after elastic buckling, with ele-
ments inside of the 13.7-ksi ring experiencing a larger reduc-
tion than elements outside of the ring. While Figure 17(a) 
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(a)

(b)

Fig. 18. Plot of membrane stresses versus applied shear load for 
finite elements along the (a) tension diagonal and (b) compression diagonal.

shows that at Vu, some compressive stresses are below 13.7 
ksi (σmin at Vcr), Figure  18(b) shows that these elements 
reached stresses larger than 13.7 ksi before decreasing prior 
to failure.

The “intermediate” shear load Vi marked in Figure 18(b) 
represents the point at which an element along the com-
pression diagonal first experiences a stress decrease. Note 
how Vi correlates to the transition from phase II to phase III 
in Figure 5. A change in stiffness in the load-deformation 
behavior occurs when the compression diagonal elements 
near the center of the plate experience reduced membrane 
stresses. The additional load-carrying capacity of a plate 
beyond Vcr is equal to Vu − Vcr (see Figure 5). Figures 5 and 
18 together show that about half of that additional capac-
ity occurs while the compression load path is still in place 
and compressive stresses are increasing throughout. Com-
pression is thus playing a clear role in developing the post-
buckling shear strength.

The membrane stresses along the diagonal directions of 
the compression and tension paths (at −45° and +45°, respec-
tively) at Vi are shown in Figure 19. It is observed that the 
compressive stresses in all elements do indeed exceed that at 
Vcr (13.7 ksi). In the center of the plate, the tensile membrane 
stresses are larger than the compressive membrane stresses 
(24 ksi vs. 15.5 ksi, respectively), but at the edges of the web 
panel, they are similar.

INTERRUPTING THE COMPRESSION PATH

The results presented in the preceding section indicate that 
compression and second-order bending stresses (due to 
large, out-of-plane deformations) play an important role in 
the post-buckling performance of this slender plate. While it 
is not clear yet how the compression behavior directly con-
tributes to Vu, studies that interrupt the compression field, 
as presented in this section, can provide some clues. To 

027-046 _EJQ119_2017-22R.indd   41 12/6/18   3:50 PM



42 / ENGINEERING JOURNAL / FIRST QUARTER / 2019

 (a) (b)

Fig. 19. (a) Compressive and (b) tensile membrane stresses (ksi) at the intermediate 
shear load Vi [see Fig. 18(b)], acting along the 45° diagonal directions shown.

this end, the plate was modified in two ways: (1)  by cut-
ting the compression field corners by 16% of the depth, D 
(model name  = CUT), thus reducing the area by 3%, and 
(2) by cutting slits near the corners along the compression 
field (model name = SLITS), thus reducing the area by 1%. 
Images of these models and the resulting Vcr and Vu values 
obtained from finite element analysis are shown in Table 1. 
Contour plots of the von Mises stress when the plate reaches 
Vu are shown for each case in Figure 20. Contour plots of 
the equivalent plastic strains at Vu are shown for each case 
in Figure 21.

Table  1 shows that interrupting the compression field 
delays the onset of elastic buckling and increases Vcr up 
to 24%. For the cut case, Vu is unaffected because the cut 
corners do not deter the development of von Mises stress 

patterns similar to the full original plate, as shown in Fig-
ure 20. For the slits case, the slits alter the von Mises stress 
patterns on the top face of the plate (by interrupting the 
edges of the von Mises stress saturation), thus reducing the 
ultimate shear capacity below the full plate model (a 5% 
reduction).

The plots of equivalent plastic strains in Figure 21 show 
similar patterns to the von Mises stress patterns. On the SP:1 
face, these strains exceed zero only in the tension field, and 
all three plates show similar strain patterns despite their 
modifications. Furthermore, the magnitude of strain values 
is similar for all three plates. Although not shown, bending 
stresses again dominate over membrane axial stresses for 
the cut and slits cases as discussed previously for the full 
case (described in detail in Figure 15).
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Fig. 20. Von Mises stresses at V = Vu for the full plate, the cut plate, and the plate with slits (units = ksi).

Table 1. Finite Element Results of Modified Plates

Vcr (kips) Vu (kips)

(ratio to baseline) 

Full 
(baseline)

344 (1.00) 593 (1.00)

Cut 428 (1.24) 594 (1.00)

Slits 380 (1.10) 564 (0.95)
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Fig. 21. Equivalent plastic strains at V = Vu for the full plate, the cut plate, and the plate with slits.

These results suggest that the elastic buckling load could 
be strategically modified to meet a given design objective 
with relatively minor modifications to the plate. The ulti-
mate shear post-buckling load, however, is not significantly 
affected by these modifications. Based on these results, the 
authors are now exploring new potential models of ultimate 
plate post-buckling mechanics for thin plates that incorpo-
rate second-order bending of the post-buckled shape. Also, 
the mechanical impact and construction/life-cycle implica-
tions of the plate modifications will be examined in future 
research by the authors.

SUMMARY AND CONCLUSIONS

Post-buckling behavior of slender webs in steel plate gird-
ers has been a mainstay of plate girder design for several 
decades on the basis of semi-empirical equations that were 
originally developed in the 1960s. Though the existing state 
of practice is generally conservative, the assumption of pure 
in-plane stress in response to shear loads after the web has 
buckled does not capture the full mechanical responses of 
the thin plate. New research by the authors has begun to 
reexamine the post-buckling behavior of thin steel plates by 

considering the combined effects of in-plane stress and out-
of-plane (second-order) bending. This study utilized a previ-
ously validated finite element modeling approach in Abaqus 
to analyze a prototype simply supported plate with an aspect 
ratio equal to 1.0. The results of these analyses showed that 
out-of-plane bulging of the post-buckled plate produces 
second-order bending moments due to compression along 
the diagonal opposite the tension field.

Although the conclusions summarized here are based only 
on the plate dimensions of this initial study, these results 
point to future research that is needed. The results are also 
relevant to plates of other proportions that demonstrate shear 
post-buckling behavior that is physically characterized by 
significant bulging/wrinkling on the diagonal (thus gener-
ating potentially significant bending stresses through the 
thickness).

• At the ultimate shear post-buckling load, Vu, the angle of 
principal stress direction is no longer 45° and instead varies 
between 15° (counterclockwise) and 65° (clockwise).

• The stress distribution through the plate thickness was 
separated into pure planar (i.e., axial) and bending 
(second-order) stresses. Bending stresses were found 
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to be significantly higher than the pure planar stresses 
at the ultimate post-buckling shear load. These stresses 
are created by second-order compression of the plate’s 
buckled shape (i.e., the buckled half-wavelengths that 
bulge out-of-plane along the length of the compression 
field diagonal).

•	 At the ultimate post-buckling shear load, almost the entire 
plate has reached the von Mises yield boundary due to a 
combination of planar and bending stresses. The contours 
of von Mises yielding show some differences, however, 
for the opposing faces of the plate.

•	 Compression membrane stresses (which are independent 
of the second-order bending effects) continue to increase 
beyond elastic buckling, contrary to the current tension 
field theory assumption. These results suggest that 
compression effects can play a significant role in the post-
buckling shear response.

Building from these results, and with the intent to fur-
ther investigate the plate behavior, the authors examined 
some simple modifications of the plate that interrupted the 
compression diagonal. The results of two cases, with small 
through-plate cuts removed from the compression diago-
nal, showed (1) an increase of 10% to 24% in the shear load 
needed to induce buckling (i.e., the elastic shear buckling 
load) and (2) a negligible effect on the ultimate shear post-
buckling load. These results indicate that the onset of elastic 
buckling can be delayed by interrupting the compression 
field, which may prove useful for designing girder webs.
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