Some Non-Conventional Cases of Column Design

SURESH T. DALAL

Most PRACTICAL structural engineering papers deal
with commonly encountered design problems—those
likely to be found in conventional building or bridge
structures. When engineers encounter uncommon prob-
lems, published guides are often lacking in numerical
data and a great deal of time can be spent developing
analytical solutions.

This paper deals with several non-conventional cases
of elastic buckling of columns likely to be encountered
by structural designers:

1. Symmetrically stepped columns with

end axial loads
2. Unsymmetrically stepped columns with

end axial loads
3. Prismatic columns with distributed axial loads
4. Prismatic columns with intermediate axial loads
5. Prismatic columns with end and

intermediate axial loads
6. Unsymmetrically stepped columns with

end and intermediate axial loads

SYMMETRICALLY STEPPED COLUMNS WITH
END LOADS
Critical elastic buckling loads for symmetrically stepped
columns with hinged ends are presented in Fig. 1 and

Table 1.

Let L = column length

A = Length of the center segment

EI, = Flexural rigidity of the center segment in
the plane of buckling

EIl = Flexural rigidity of the end segments in
the plane of buckling

a = Ratio 4/L

B8 = Ratio 12/[1

P.. = Ciritical value of the end load

Suresh T. Dalal is a structural design engineer in Oakland, Calif.

Portions of this paper previously appeared in *“Design News” March
26, 7968 and: April 26, 7968
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Fig. 1.

Symmetrically stepped columns



Table 1. Symmetrically Stepped Columns with Hinged Ends

12/11 A/L Leff/L Pcr/Pe 12/11 A/L Leff/L Pcr/Pe
1.00 0 1.000000 1.000000 2.50 0 1.581139 0.400000
0.1 1.000000 1.000000 0.1 1.486412 0.452607
0.2 1.000000 1.000000 0.2 1.392700 0.515567
0.3 1.000000 1.000000 0.3 1.301612 0.590251
0.4 1.000000 1.000000 0.4 1.215756 0.676561
0.5 1.000000 1.:000000 0.5 1.139128 0.770647
0.6 1.000000 1.000000 0.6 1.076937 0.862223
0.7 1.000000 1.000000 0.7 1.033731 0.935804
0.8 1.000000 1.000000 0.8 1.010048 0.980202
0.9 1.000000 1.000000 0.9 1.001243 0.997519
1.0 1.000000 1.000000 1.0 1.000000 1.000000
1.10 0 1.048809 0.909091 3.00 0 1.732051 0.333333
0.1 1.039340 0.925731 0.1 1.616702 0.382596
0.2 1.030270 0.942103 0.2 1.502243 0.443118
0.3 1.021991 0.957428 0.3 1.390166 0.517448
0.4 1.014852 0.970945 0.4 1.283080 0.607425
0.5 1.009110 0.982027 0.5 1.185418 0.711635
0.6 1.004884 0.990302 0.6 1.103889 0.820633
0.7 1.002133 0.995748 0.7 1.045766 0.914390
0.8 1.000647 0.998708 0.8 1.013566 0.973410
0.9 1.000082 0.999836 0.9 1.001664 0.996681
1.0 1.000000 1.000000 1.0 1.000000 1.000000
1.20 0 1.095445 0.833333 4.00 0 2.000000 0.250000
0.1 1.077295 0.861649 0.1 1.850090 0.292156
0.2 1.059814 0.890310 0.2 1.700860 0.345671
0.3 1.043709 0.917997 0.3 1.553531 0.414343
0.4 1.029671 0.943198 0.4 1.410433 0.502684
0.5 1.018265 0.964446 0.5 1.276075 0.614112
0.6 1.009810 0.980665 0.6 1.158802 0.744700
0.7 1.004282 0.991490 0.7 1.070901 0.871970
0.8 1.001297 0.997412 0.8 1.020860 0.959550
0.9 1.000164 0.999672 0.9 1.002516 0.994986
1.0 1.000000 1.000000 1.0 1.000000 1.000000
1.30 0 1.140175 0.769231 5.00 0 2.236068 0.200000
0.1 1.113998 0.805808 0.1 2.057252 0.236279
0.2 1.088670 0.843738 0.2 1.878969 0.283244
0.3 1.065150 0.881410 0.3 1.702214 0.345121
0.4 1.044447 0.916700 0.4 1.528978 0.427757
0.5 1.027461 0.947259 0.5 1.363414 0.537953
0.6 1.014775 0.971092 0.6 1.214230 0.678262
0.7 1.006449 0.987226 0.7 1.097292 0.830531
0.8 1.001950 0.996111 0.8 1.028504 0.945341
0.9 1.000246 0.999508 0.9 1.003383 0.993268
1.0 1.000000 1.000000 1.0 1.000000 1.000000
1.50 0 1.224745 0.666667 10.00 0 3.162278 0.100000
0.1 1.184080 0.713244 0.1 2.877701 0.120756
0.2 1.144462 0.763479 0.2 2.593348 - 0.148689
0.3 1.107196 0.815739 0.3 2.309664 0.187457
0.4 1.073826 0.867225 0.4 2.027624 0.243234
0.5 1.045951 0.914065 0.5 1.749512 0.326713
0.6 1.024819 0.952151 0.6 1.481327 0.455720
0.7 1.010832 0.978682 0.7 1.240639 0.649694
0.8 1.003266 0.993499 0.8 1.072023 0.870145
0.9 1.000411 0.999179 0.9 1.007938 0.984311
1.0 1.000000 1.000000 1.0 1.000000 1.000000
2.00 0 1.414214 0.500000 50.00 0 7.071068 0.020000
0.1 1.343664 0.553884 0.1 6.378106 0.024582
0.2 1.274234 0.615888 0.2 5.685167 0.030940
0.3 1.207546 0.685793 0.3 4.992298 0.040124
0.4 1.145944 0.761506 0.4 4.299607 0.054093
0.5 1.092509 0.837818 0.5 3.607360 0.076846
0.6 1.050523 0.906127 0.6 2.916297 0.117581
0.7 1.022081 0.957259 0.7 2.229005 0.201269
0.8 1.006615 0.986899 0.8 1.559425 0.411217
0.9 1.000825 0.998352 0.9 1.061945 0.886739
1.0 1.000000 1.000000 1.0 1.000000 1.000000

Note: P, and Ly are referred to I.



The buckling equation for this column is given by:

tan (KIL) (1 — a) . tan (KIL)(a) = '\/E

. s )

where

2

Buckling loads for various values of 8 (> 1) and «
were calculated by solving Equation (1) with the help
of a digital computer using the method of linear inter-
polation (“Regula Falsi”’).! Values were then normal-
ized by dividing by the corresponding values of the
Euler buckling load P. for a prismatic column of length
L and moment of inertia fo. Also, effective length factors
were calculated based on an equivalent prismatic
column with moment of inertia /5.

Thus:
mEl
P, = _Lz—2 (3)
2
P, =Tt @)
Lo/
or Ly _ ™V8 (5)
L Ki\L

Two special cases can be recognized:

(a) When the column is prismatic with moment of
inertia /;:

a =10

Loy _ N

L
Pcr _
P,

1
8

(b) When the column is prismatic with moment of
inertia /s:

a=1 and/or B =1
Lar _ 19
L
P—M=1.O
P,

The values of P.. given here agree with those given
in a similar table in Reference 2, the scope of which
table has been extended here. It may be noted that the
above data can also be used for an unsymmetrical stepped
cantilever column (with fixed support at the end of the
segment having moment of inertia I,), if Equations (3)
and (4) are modified as follows:
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2
p, = "L (32)
aLr
2
p, = 7L (4a)
4L

The ratio L;;/L is unaffected, and Equation (5)
still holds. Similarly values of P../P. are also unaffected.

Example:

Given: A stepped column (Fig. 1) with hinged ends:
E = 30,000 kips/in.2, L = 200 in., A = 120 in., [; =
50 in.% I, = 100 in.%

Find the critical buckling load for this column.

Solution:
a=A 120 _ 40
L 200
gL _ 100 _
I 50

The Euler buckling load for a prismatic column with

I, = 100 in.% is:
2
_ w2El, _ 9.8696 X 30,000 X 100 — 740.2 kips

P,
L (200)?

From Table 1 (or Fig. 1):

L. 0.9061

P,
Ps = 0.9061 X 740.2 = 670.7 kips

Alternatively:
LLL” = 1.0505 (from Table 1)
Le;, = 200 X 1.0505 = 210.1 in.
2
P, — mEl, _ 9.8696 X 30,000 X 100 _ 670.7 kips
Ly (210.1)?

UNSYMMETRICALLY STEPPED HINGED COLUMNS
WITH END LOADS

Elastic buckling loads for this case are given in Fig.

2 and Table 2.
Nomenclature for this case is the same as for the

symmetrical case, except that:

A = Length of lower segment

EI, = Flexural rigidity of the lower segment in the
plane of buckling

EI, = Flexural rigidity of the upper segment in the

plane of bending.



The buckling equation for this column is given by :2

N [\/% EL)(@) |+ tan (D= ] = 0 ©

where Ky? = P.,/EI.
Equation (6) was solved for values of 0 < o < 1.0
and 8 2> 1.0, using a digital computer.! Critical loads,

Example:

Given: A hinged stepped column with £ = 30,000
kip/in2, L = 200 in., 4 = 100 in., [1 = 60 in.4 I, =
90 in.%

Find the critical buckling load for this column.

P.., calculated therefrom, were normalized by dividing Solution:
by P,, where 4 100
P, = mEL/L? a=7=55"05
is the value of Euler buckling load for a prismatic column L, 90
of moment of inertia I, and length L. =7 0" 1.5
Effective length factors for an equivalent prismatic '
column with moment of inertia I, were also calculated: The Euler buckling load for a prismatic column with
— I, = 90 in.t is
Ly V8 ® IEL,  9.8696 X 30,000 X 90
L~ KL =1rE[2= .8696 X 30, X — 666.2 ki
T T (200)? & ps
Two special cases involving known results can be From Table 2 (or Fig. 2):
deduced directly from Equation (6): P,/P, = 0.792
(a) When the column has a uniform moment of inertia I,: P, = 0.792 X 666.2 = 527.6 kips
@ =10 and/or § =10 Alternatively,
Leff/L = 1.0 and Pcr/Pe = 1.0 Leff/L = 1.1235 (fI‘Om Table 2)
(b) When the column has uniform moment of inertia 7;: L. =200 X 1.1235 = 224.7 in
eff — . = . .
a =0 9
EI 9.8696 30,000 90
_ p, =t X 30000 X 90 _ 5578 kips
Ly/L=VB and P./P,=1/8 Lo (224.7)
LO B- l O ] /
vz /AN
. /
- B:=1.5 e i // / x:=A
S /) L
—='0.6 ,// , A / B = _I__Z
L
Np B:2.0 —// / / // / / Il
= = - rd {P
o> O B:30] _I— ~ /
B:4 / / y, ],
40T i
B:=5.0 — | /
0.2 — V4 M
B=10 A J_
p—
8150 P
0.0
0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(0.6

Fig. 2. Unsymmetrically stepped columns
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Table 2. Unsymmetrically Stepped Columns with Hinged Ends

/L 4/L L/ P../P, /L 4/L L/ P../P.
1.00 0 1.000000 1.000000 4.00 0 2.000000 0.250000
0.1 1.000000 1.000000 0.1 1.995274 0.251186
0.2 1.000000 1.000000 0.2 1.965886 0.258752
0.3 1.000000 1.000000 0.3 1.898815 0.277354
0.4 1.000000 1.000000 0.4 1.790913 0.311782
0.5 1.000000 1.000000 0.5 1.644268 0.369875
0.6 1.000000 1.000000 0.6 1.464850 0. 466030
0.7 1.000000 1.000000 0.7 1.266970 0.622970
0.8 1.000000 1.000000 0.8 1.092479 0.837865
0.9 1.000000 1.000000 0.9 1.010663 0.979011
1.0 1.000000 1.000000 1.0 1.000000 1.000000
1.50 0 1.224745 0.666667 5.00 0 2.236068 0.200000
0.1 1.223442 0.668088 0.1 2.230441 0.201010
0.2 1.215107 0.677284 0.2 2.195567 0.207447
0.3 1.195615 0.699548 0.3 2.116250 0.223288
0.4 1.164286 0.737701 0.4 1.988846 0.252812
0.5 1.123540 0.792178 0.5 1.815418 0.303422
0.6 1.078963 0.858987 0.6 1.601526 0.389881
0.7 1.039173 0.926028 0.7 1.359682 0.540910
0.8 1.012702 0.975072 0.8 1.131008 0.781751
0.9 1.001639 0.996731 0.9 1.014699 0.971238
1.0 1.000000 1.000000 1.0 1.000000 1.000000
2.00 0 1.414214 0.500000 10.00 0 3.162278 0.100000
0.1 1.411968 0.501591 0.1 3.153353 0.100567
0.2 1.397767 0.511835 0.2 3.098418 0.104165
0.3 1.364848 0.536824 0.3 2.974363 0.113035
0.4 1.311756 0.581158 0.4 2.775939 0.129772
0.5 1.241077 0.649236 0.5 2.505679 0.159276
0.6 1.159806 0.743411 0.6 2.169106 0.212539
0.7 1.081744 0.854577 0.7 1.774785 0.317474
0.8 1.026507 0.949022 0.8 1.347052 0.551101
0.9 1.003330 0.993373 0.9 1.039274 0.925848
1.0 1.000000 1.000000 1.0 1.000000 1.000000
2.50 0 1.581139 0.400000 50.00 0 7.071068 0.020000
0.1 1.578136 0.401524 0.05 7.068257 0.020016
0.2 1.559271 0.411298 0.10 7.049390 0.020123
0.3 1.515797 0.435229 0.15 7.001681 0.020398
0.4 1.445675 0.478474 0.20 6.916701 0.020903
0.5 1.351329 0.547618 0.25 6.789761 0.021692
0.6 1.239755 0.650621 0.30 6.618820 0.022826
0.7 1.126682 0.787767 0.35 6.403520 0.024387
0.8 1.041422 0.922033 0.40 6.144443 0.026487
0.9 1.005076 0.989925 0.45 5.842702 0.029294
1.0 1.000000 1.000000 0.50 5.499653 0.033062
3.00 0 1.732051 0.333333 8'23 i'éégzgz 82822222
0.1 1.728403 0.334742 o s 4 93701 0 055693
0.2 1.705593 0.343755 0.70 3.743804 0.071347
0.3 1.653246 0.365868 0.75 3.216261 0.096671
0.4 1.568876 0.406278 0 80 > tscssn 0 141607
0.5 1.454745 0.472527 o 85 > 067930 0 233848
0.6 1.317503 0.576098 0.90 1.463876 0.466650
0.7 1.173019 0.726758 0.95 1.034019 0.935282
0.8 1.057425 0.894335 1.00 1.000000 1.000000
0.9 1.006879 0.986383
1.0 1.000000 1.000000 Note: Lesy and P are referred to I,
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PRISMATIC COLUMNS WITH DISTRIBUTED
AXIAL LOADS

Critical buckling loads for prismatic columns with
distributed axial loads acting in combination with an
end load are presented here in both graphical and
numerical form. The results are “exact” within the
limitations of the ordinary elastic buckling theory.

The four different end conditions considered are
shown in Fig. 3. In each case, the loading consists of a
uniformly distributed axia] force ¢ per unit length of the
column and a concentrated force P at the upper end of
the column. Both ¢ and P may be compressive (positive),
or either one may be a tensile (negative) load while the
other is compressive. However, in all cases it is the
critical combination of the two loads that represents
the conditions for elastic buckling. The loads are as-
sumed to remain vertical during buckling.

The differential equation of the buckled shape of a
prismatic column with generalized end conditions (so
that axial, shear and moment reactions may exist at
both ends) is given by:

)2 IR Gl
dx* L2 dx? L? dx? dx

where a = ¢qL3/EI and 8 = PL?/EL

Equation (7) is a fourth-order homogeneous equation
with a variable coefficient, and the solution involves
integrals which cannot be evaluated in closed form.
The “‘series solution method of Frobenius” was used to
obtain the solution in the form:

™)

¥y = a0 + auS1 + @282 + a38; (8)

in which the a’s are constants, and Si, Sy,.53 are the in-
finite series given by

33

Srfien (B -2z ] o

s=(3)T: “““”()+ (2)+ - Joo

()[R ()
3(3')a(x)3 ] (11)

When the appropriate boundary conditions are
substituted in Equation (8), four equations are obtained
with ag, a1, a2, and a3 as unknowns. Elimination of these
constants leads to the buckling equation from which
the critical buckling loads can be found. Because the
buckling equation involves infinite series, a digital com-
puter was used to compute the desired roots and hence
the buckling loads. The method of linear interpolation
(“‘Regula Falsi’’) was used for this purpose.

The boundary conditions for the various end-
conditions shown in Fig. 3 can be expressed as follows:

&
y=0and“2 =0

(a) Pinned support: e

d
y —0and2 =0
dx

d% (6)dy
a 24 (2)2=0
an a’x3+ L2] dx

The results of using these boundary conditions for the
four cases shown in Fig. 3 are given in Fig. 4 and Table 3.
Two special cases can be recognized:

(b) Fixed support:

d2
 _,

Free end:
(c) Free en T

1. If ¢ = 0, the column buckles at a load P, =
where P, is the Euler buckling load

P,

2. If P = 0, buckling is due to distributed axial force
only, its value being denoted by (¢L)ecr.

If gL is larger than this critical value, the end force
P., is negative (tensile). If ¢L is negative, then P, ex-
ceeds the Euler load, P..

With the aid of the data presented in Fig. 4 and
Table 3, the critical combinations of concentrated end
load P and distributed axial load ¢ can be found in each
particular case of end conditions. The only data of this
type previously available were limited to Cases 1 and 2,
and to positive values of ¢. For the special case of P = 0,
the buckling loads determined above agree with previous
results.

In the range —4 < ¢L/P. < 10, the interaction effect
of the uniform load ¢L on the magnitude of P, can be
represented by the following empirical relations, in
whichm = P,,/P,andn = ¢qL/P,:

JANUARY /1969
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Fig. 4. Prismatic columns with distributed axial loads
Table 3. Columns with Distributed and End Axial Loads

qL P.,/P,

P, Case 1 Case 2 Case 3 Case 4
—4.00 2.7426 2.1134 2.2040 2.7658
—3.00 2.3520 1.8484 1.9319 2.3649
—2.00 1.9331 1.5749 1.6426 1.9387
—1.50 1.7121 1.4348 1.4905 1.7153
—1.00 1.4831 1.2923 1.3330 1.4845
—0.50 1.2458 1.1474 1.1697 1.2461

0.00 1.0000 1.0000 1.0000 1.0000

0.25 0.8739 0.9253 0.9127 0.8740

0.50 0.7458 0.8500 0.8236 0.7461

0.75 0.6155 0.7740 0.7327 0.6163

1.00 0.4831 0.6974 0.6400 0.4845

1.50 0.2121 0.5420 0.4488 0.2153

2.00 |—0.0669 0.3838 0.2497 | —0.0613

2.50 |—0.3537 0.2227 0.0425 | —0.3448

3.00 |—0.6480 0.0586 | —0.1730 | —0.6351

3.50 |—0.9493 | —0.1085 | —0.3968 | —0.9317

4.00 |—1.2574 | —0.2788 | —0.6289 | —1.2342

5.00 |—1.8917 | —0.6289 | —1.1172 | —1.8554

6.00 |—2.5479 | —0.9922 | —1.6354 | —2.4959

8.00 |—3.9143 | —1.7600 | —2.7479 | —3.8246
10.00 |—5.3373 | —2.5843 | —3.9403 | —5.2044

(gL)er 1.8814 3.1764 2.6002 1.8904

P,
forP =0
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Case 1—Hinged-Hinged:
m = 1.0000 — 0.5000n — 0.01692n% + 0.000051n* —
0.00000015n°

(max. error of —0.109, atn = 10)

Case 2—Fixed-Free:
m = 1.0000 — 0.2973n — 0.0052012 — 0.00010n3

(max. error of +0.349%, atn = 10)

Case 3—Fixed-Hinged:
m = 1.0000 — 0.3465n — 0.01334n> — 0.00056n% +
0.0000136n* 4+ 0.00000285n°
(max. error of +0.56% atn = 8)

Case 4—Fixed-Fixed:
m = 1.0000 — 0.5001z — 0.01550n2 4+ 0.000073n% +
0.000030n4

(max. error of —0.519, atn = 10)

Examples:

Given: A Fixed-Hinged column (Case 3, Fig. 3): £ =
30,000 kips/in.2, 7 = 100 in.%4, L = 150 in. The column
carries a uniformly distributed compressive load ¢ of
9 kips/in. along its length. Find the maximum end load
P it can carry before buckling.

Solution:

_20.1907 X 30,000 X 100
° (150)2
Total distributed load,
gL = 9 X 150 = 1,350 kips
qL/P, = 1,350/2,692 = 0.501

= 2,692 kips

i

n =
From Table 3 (or Fig. 4 or the empirical relation):
P,/P, = 0.8233

0.8233 X 2,692 = 2,216 kips (compressive)

m =

Pcr

Given: A cantilever column (Case 2, Fig. 3): E = 30,000
kips/in.%, I = 200 in.%, L = 100 in. The column carries
an end load P of 1,145 kips. Find the maximum uni-
formly distributed load ¢ it can carry before buckling.

Solution:
2

p, = w2 EI _ 9.8696 X 30,000 X 200 — 1,480 kips
4 12 (4 X 100)?

m =P/P, = 1,145/1,480 = 0.774
From Table 3 (or Fig. 4):
n = gL/P, = 0.75
gL = (0.75)(1,480) = 1,110 kips
g = 11.1 kips/in. (compressive)



PRISMATIC COLUMNS WITH
INTERMEDIATE AXIAL LOADS

For the case of a hinged prismatic column with inter-
mediate axial load and no end load at the top, the buck-
ling equation!? is given by:
— 2
tan [(KL) (‘il)] - (KL)(1 — A/L)
L (4/L) — 2 + Y/3(KL)*(1 — 4/L)

Two special conditions can be deduced directly
from Equation (12):
(a) When 4 = L, the load is applied at the top end,
and P,, = P,, the Euler buckling load

(b) When 4 = 0, the load is applied at the base, and
P, = o, ie., the column can carry an infinitely
large load at the base before it starts buckling, as

(12) is obvious by inspection.
where L = length of column,
A = height of the point of application of the
load, P, above the base, Table 4. Hinged Prismatic Columns with an Intermediate
K® = P/EI Axial Load P at Height A Above Base (No End Load at Top)
EI = Flexural rigidity of the column in the plane A4/L P./P. A/L P/P,
. of buckling . o 0 " Infinity
Equation (12) was solved with the help of a digital
computer for various values of 4/L (0 < A/L < 1). 0.05 6.732247 0.55 1.874724
.. 0.10 3.743081 0.60 1.831386
The critical loads, P, calculated therefrom were then 0.15 2 786414 0.65 1.758470
normalized by dividing them by the Euler buckling 0.20 2 343013 0.70 1.662178
load, P., where: 0.25 2.109262 0.75 1.552196
mEl 0.30 1.983632 0.80 1.436916
P, = — (13) 0.35 1.921366 0.85 1.321834
L 0.40 1.897396 0.90 1.209920
. : 0.45 1.893182 0.95 1.102498
The %”esults are given in Table 4 and a plot of Per/Pe 0,50 1 891248 1,00 1000000
vs. A/L is shown in Fig. 5. :
T
6
S
4
© \
N
1
o®
3 \
2
|
° 0. 02 03 04 05 06 07 08 08 10
A/L

Fig. 5. Prismatic columns with intermediate axial loads
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PRISMATIC COLUMNS WITH END AND Table 5. Hinged Prismatic Columns with Twoe Equal

INTERMEDIATE LOADS Loads P, One at Top, One at Height A Above Base

For the case of a hinged prismatic column with two A/L L/L P../(EI/L?)

eq}lal loads, one.a%t the top al.nd one at intermediate 0 0.707107 9 869604
height, the condition of elastic buckling can be ex-

pressed by: 0.05 0.743198 8.934302

0.10 0.777356 8.166393

2 V2 0.15 0.806427 7.588215

+ — = 0.20 0.829349 7.174564

tan [(KL)(1 — 4)] ' tan [(V2 4)(KL)] 0.25 0.846201 6.891646

1 0.30 0.857603 - 6.709601

KDz —4) (14) 0.35 0.864445 6.603812

0.40 0.867787 6.553057

where the parameters are as defined previously. 0.45 82223% 2;;2328

This buckling equation was also solved with the help 0.50 ) ’

of a digital computer using the method of linear inter- 0.55 0.869439 6.528170

polation.! The critical values, P.,, calculated therefrom 0.60 0.871736 6.493817

: o : R 2 0.65 0.876883 6.417805

were nondimensionalized by dividing them by (EI/L?). 0.70 0885517 6. 293258

The effective length factors, (L.;;/L), were then cal- 0.75 0 897781 6. 122508
culated such that the total load, (2P)., is given by the

ion - 0.80 0.913416 5.914703

cxpression: 0.85 0.931949 5.681792

(2P).r = mEI/L? (15) 0.90 0.952856 5.435190

0.95 0.975665 5.184038

The results are given in Table 5. Figure 6 is a plot 1.00 1.000000 4.934802

of P.,/(EI/L?) vs. A/L.
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A/L

Fig. 6. Prismatic columns with end and intermediate axial loads
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Again, two special conditions can be recognized:

(a) When A/L = 0, one load is at the top end and the
other at the base, and

P, = Euler buckling load
= wEI/L* = 9.868604 (EI/L?) (16)

L., _ T _ _1_
L +/2KL) /2

= 0.707107 (17)

(b) When 4/L = 1, both loads are applied at the top
end, and

(2P).; = Euler buckling load = =2EI/L?
P.. = Y/, (x*EI/L?) = 4.934802 (EI/L*)  (18)

In this case,

KL = w/\/2
so that
L,,/L = 7/(\/2KL)= 1.0 (19)
Example:

Given: A hinged column with: E = 30,000 kips/in.2,
I=100in.% L = 150 in.

The column carries two equal loads; one at the top
and the other at 90 in. above the base. Find the critical

value of these loads.

Solution:

A/L = 90/150 = 0.6

From Table 4 (or Fig. 5):
P../(EI/L*) = 6.494

6494 X 30,000 X 100
B (150)2

= 865.9 kips

cr

Alternatively, from Table 4, for 4/L = 0.6:
Loy/L = 0.872

Lo, = 0.872 X 150 = 130.8 in.

(2P)e, = mEI/L.;?

2 % 30,000 X 100
_ ™ X 30,000 X100 _ 550 6 kips
(130.8)2

P., = 865.3 kips

STEPPED COLUMNS WITH INTERMEDIATE LOADS

The case of a non-prismatic column with hinged ends,
carrying two loads, P; at the top end and P, at mid-
height, is not uncommon.

Let the cross-sectional moment of inertia of the upper
half be I; and that of the lower half be /,. Let a =
P2/P1 and ,3 = Iz/ll.

The buckling equation? for this column is given by:

220 /B [\/m
= KIL . <
a+2V1+a (KaL) tan (K.L/2) "

1
tan (V1 + a/_B-KlL/Z)] (20)

where o _ p/EI (21)

This equation was solved with the help of a digital
computer for various values of « and 8, and the critical
values of the total load, (P; + P:), were calculated.
These were nondimensionalized by dividing by El,/L?.

The critical values can also be represented as?:

Pyt Py wElL, L., ™8 (22)
(P1+ P2)er ., or 7 TV —
where L., is in terms of Io.

Values of (P1 + P2)e/(El/L?) and L,;;/L for 0 < «
<50 and 1 £ B <50 are given in Table 6. The plot of
(P14 P3)er/(EIL/L?) vs. B is shown in Fig. 7.

The values of L,;;/L given above agree with those
given in a similar Table in Reference 2, the scope of
which Table has been extended here.*

Two special cases can be recognized:

(a) For « = 0 and B = 1.0, only P; is applied (at the
top) and the column has uniform moment of inertia
12 = 112

(P1 + P3)er = Euler buckling load = #2EI,/L?
Leff/L = 1.0

(b) For & = 1.0 and 8 = 1.0, the column is of uniform
cross-section with two equal loads, one applied at
top and the other at mid-height:

(P14 P2)er = 13.0720 (EL/L?)
Leff/L = 0868916

which agree with the corresponding values for
A/L = 0.50 previously given in Table 5.

* Table 2-6 (p. 100) gives values of Less for « = 0, 0.25, 0.35,
0.75, 1.00 and B = 1.00, 1.25, 1.50, 1.75, 2.00 and one value for
a = 2.00,8 = 1.00.
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Example:

Given: A hinged column with E = 30,000 kips/in.%,
I, = 50 in4 I, 100 in.%, L = 100 in. It carries two
loads, P, at the top end and P, at mid-height such that

P, = 2.0 P;. Find the critical values of these loads.
Solution:
P
a=—=20
Py
1,
= - =20
B 2

From Table 6 or Fig. 7;
El,

(Pr+ Po)er = 10.28( o

= 3,084 kips

) ~10.28 X 30,000 X 100
- (100)?

(3P1) e = 3,084 kips or (P1)e = 1,028 kips

(Py)er = 2.0 X 1,028 = 2,056 kips

Alternatively, L,,;/L = 0.979756 (Table 6)

Leff = 97.98 in.
mEl,  9.8696 X 30,000 X 100
P P or = =
(Pr+ Po) Loy (97.98)2
— 3,084 kips
(P1)er = 1,028 kips and (Ps)er = 2,056 kips
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Table 6. Critical Buckling Loads for Hinged Non-Prismatic Columns with End Load P; at Top and Load P; at
Mid-Height, I; Top Half, I, Lower Half

(Pl + P2)cr/ (Pl + P2)cr/
P,/P, L/L L.;/L. (EL/L?) Py/P L/L Lo;/L (EL/LY
0 1.00 1.000000 9.869604 2.00 1.00 0.822572 14.586535
1.25 1.062289 8.746095 1.25 0.861874 13.286550
1.50 1.123540 7.818481 1.50 0.901483 12.144632
1.75 1.183209 7.049806 1.75 0.-940884 11.148792
2.00 1.241077 6.407705 2.00 0.979756 10.281679
2.50 1.351329 5.404773 2.50 1.055272 8.862807
3.00 1.454745 4.663654 3.00 1.127434 7.764572
4.00 1.644268 3.650519 4.00 1.261959 6.197398
10.00 2.505679 1.571987 10.00 1.889542 2.764309
50.00 5.499653 0.326309 50.00 4.109967 0.584283
0.25 1.00 0.949037 10.958044 2.50 1.00 0.809119 15.075603
1.25 1.005055 9.770583 1.25 0.846534 13.772451
1.50 1.060455 8.776382 1.50 0.884329 12.620363
1.75 1.114673 7.943371 1.75 0.922010 11.609892
2.00 1.167446 7.241459 2.00 0.959260 10.725738
2.50 1.268391 6.134703 2.50 1.031793 9.270741
3.00 1.363424 5.309309 3.00 1.101270 8.137891
4.00 1.538155 4.171568 4.00 1.231084 6.512149
10.00 2.336207 1.808328 10.00 1.838882 2.918717
50.00 5.119076 0.376632 50.00 3.994717 0.618483
0.50 1.00 0.913974 11.814954 3.00 1.00 0.798977 15.460785
1.25 0.965533 10.586828 1.25 0.834952 14.157164
1.50 1.016755 9.547004 1.50 0.871362 12.998792
1.75 1.067074 8.667830 1.75 0.907724 11.978209
2.00 1.116199 7.921664 2.00 0.943727 11.081724
2.50 1.210478 6.735746 2.50 1.013965 9.599609
3.00 1.299515 5.844363 3.00 1.081374 8.440099
4.00 1.463685 4.606856 4.00 1.207560 6.768340
10.00 2.216692 2.008579 10.00 1.800149 3.045670
50.00 4.850063 0.419571 50.00 3.906452 0.646748
0.75 1.00 0.888392 12.505205 10.00 1.00 0.753370 17.389318
1.25 0.936617 11.250608 1.25 0.782726 16.109433
1.50 0.984703 10.178625 1.50 0.812687 14.943512
1.75 1.032085 9.265506 1.75 0.842868 13.892494
2.00 1.078460 - 8.485780 2.00 0.872989 12.950374
2.50 1.167713 7.238153 2.50 0.932347 11.353877
3.00 1.252230 6.294073 3.00 0.989918 10.071657
4.00 1.408450 4.975276 4.00 1.098832 8.174054
10.00 2.127670 2.180175 10.00 1.619315 3.763889
50.00 4.649274 0.456593 50.00 3.492379 0.809202
1.00 1.00 0.868916 13.072049 50.00 1.00 0.732808 18.378909
1.25 0.914555 11.799937 1.25 0.759106 17.127522
1.50 0.960197 10.704807 1.50 0.786047 15.973586
1.75 1.005286 9.766077 1.75 0.813298 14.921070
2.00 1.049511 8.960362 2.00 0.840606 13.967390
2.50 1.134830 7.663697 2.50 0.894714 12.329088
3.00 1.215810 6.676794 3.00 0.947508 10.993442
4.00 1.365816 5.290731 4.00. 1.048012 8.986014
10.00 2.058699 2.328703 10.00 1.533546 4.196684
50.00 4.493432 0.488814 50.00 3.294608 0.909269
1.50 1.00 0.841255 13.945835
1.25 0.883143 12.654278
1.50 0.925222 11.529422
1.75 0.966957 10.555654
2.00 1.008030 9.712987
2.50 1.087580 8.344061
3.00 1.163372 7.292263
4.00 1.304267 5.801851
10.00 1.958668 2.572633
50.00 4.266907 0.542093




