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ABSTRACT

The current AASHTO and AISC Specification equations characterizing the lateral-torsional buckling (LTB) resistance of steel I-section mem-
bers are the same, with minor exceptions, and are based in large part on unified provisions calibrated to experimental data. This paper takes 
a fresh look at the correlation of the flexural strength predictions from these equations with a large experimental data set compiled from 
research worldwide. To account fully for the moment gradient and end restraint effects present in the physical tests, the study employs practi-
cal buckling calculations using inelastic stiffness reduction factors (SRFs) based on the design resistance equations. The study focuses on 
uniform bending tests as well as moment gradient tests in which the transverse loads are applied at braced locations. Reliability indices are 
estimated in the context of building design. It is shown that a proposed modified form of the current resistance equations provides a more 
uniform level of reliability, as a function of the LTB slenderness, consistent with the target intended in the AISC Specification. The paper also 
calls attention to the limited experimental data pertaining to the inelastic LTB resistances in certain cases. The paper concludes by providing 
additional recommendations for LTB strength calculations in routine design, including illustrative plots conveying the impact of the proposed 
changes.
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INTRODUCTION

The AASHTO Specification (2016) and AISC Specifica-
tion (2016) I-section member lateral-torsional buckling 

(LTB) strength curves are based largely on the so-called uni-
fied provisions (White, 2008). The unified provisions were 
developed given an extensive assessment of several large 
experimental datasets encompassing a wide range of mem-
ber types and strength limit states (White and Jung, 2008; 
White and Kim, 2008; White et al., 2008). The unified AISC 
and AASHTO provisions differ in only a few minor techni-
cal details, which are discussed in the next section. They 
also differ in the form in which their rules are presented—
the AISC Specification emphasizes the simplified design 

of compact section members, the AASHTO Specifications 
feature the simplified design of slender-web members, and 
the unified provisions present the resistance equations as a 
single set of flowcharts covering all I-section member types.

Various researchers have observed that finite element 
(FE) test simulations using idealized boundary conditions 
and commonly employed deterministic residual stresses 
and initial geometric imperfections tend to exhibit smaller 
strengths than indicated by experimental data (Greiner et al., 
2001; Kim, 2010; Lokhande and White, 2014; Subramanian 
and White, 2017a). This disconnect between test simulations 
and experimental test data has led to wide variations among 
the results from predictor equations derived predominantly 
from test simulations, such as the LTB equations defined 
in CEN (2005), versus those obtained from predictor equa-
tions derived predominantly from experimental tests, such 
as the AASHTO and AISC Specification equations. Fig-
ure 1, adapted from Ziemian (2010), illustrates the stark dif-
ferences among the LTB strength predictions employed in 
various current international steel design standards. Engi-
neers who work on both U.S. and international projects can 
observe predicted nominal strengths that differ by more than 
a factor of 2 in the most extreme cases. The reader is referred 
to Ziemian (2010) for a detailed discussion of the origins and 
nature of the curves in this plot.

It should be noted that if the members considered in 
Figure  1 are only slightly singly symmetric, the AISC 
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Specification singly symmetric curve applies. According 
to the unified provisions, this is the appropriate LTB resis-
tance curve for both doubly- and singly-symmetric sections. 
In addition, the reader should note that the curve for welded 
I-section members recommended by MacPhedran and Gron-
din (2009) is essentially identical to the Standards Asso-
ciation of Australia (SAA) (1998) strength curve. Lastly, it 
should be noted that the relatively optimistic predictions by 
MacPhedran and Grondin (2009) (compared to the majority 
of the other equations) is due to a lack of consideration of 
end restraint from adjacent test unbraced lengths and, hence, 
the use of a lateral-torsional buckling effective length factor 
of 1.0 in the prediction calculations (MacPhedran and Gron-
din, 2011). The CSA Group (2014) curve is based largely 
on the statistical analysis conducted by Baker and Ken-
nedy (1984) of Dibley’s (1969) rolled I-section member LTB 
tests, considering the effective lengths reported by Dibley; 
however, these same tests are included in the analyses by 
White and Jung (2004, 2008), providing validation of the 
unified provisions. Therefore, the conclusions from White 
and Jung (2004, 2008) and from Baker and Kennedy (1984) 
are at odds. The CSA Group (2014) curve appears to be more 
related to MacPhedran and Grondin’s recommended curve, 
based on the use of K = 1.0. From White and Jung (2004), 
the unified provisions, using elastic LTB K factors per Neth-
ercot and Trahair (1976), predict Dibley’s 30 rolled I-section 
test resistances with a mean Mtest/Mn of 1.017 and a coeffi-
cient of variation of 0.064. In addition, a substantially larger 
number of rolled I-section tests are considered in White and 
Jung (2004, 2008) and White and Kim (2004, 2008), as well 
as in this paper.

Subramanian and White (2017a) discuss the need to 
resolve the disconnects between FE test simulations, the 
AASHTO Specification (generally referred to in this paper 
as simply AASHTO) design strength equations, and experi-
mental test data. It is essential to resolve these disconnects 
so that engineers can properly apply refined methods that 
move beyond traditional effective length and moment modi-
fication factors, K and Cb, where merited, to better quantify 
member LTB strengths. AISC Specification Appendix A 
provides guidance for conducting test simulations for design 
assessment; however, engineers who employ these methods 
typically will find that their calculated strengths are sub-
stantially smaller than strengths estimated using the ordi-
nary AISC Specification Chapter F equations.

Subramanian and White (2017a, 2017b, 2017c) explain 
that the preceding disconnect can be resolved partly by 
the use of smaller nominal residual stresses and geometric 
imperfections in FE test simulations. This finding is based 
on correlation with experimental data as well as evaluation 
of sensitivity studies using test simulations (Subramanian 
and White, 2017a). However, these investigators also recom-
mend the following modifications to the unified LTB resis-
tance equations:

1. The plateau length, L r E F0.63 / ,p t yc=  should be 
employed for all cross-section types (Subramanian and 
White, 2017b), as opposed to the use of this equation 
with a coefficient of 1.1 in the unified provisions. In 
addition to the findings by Subramanian and White, 
Greiner and Kaim (2001) and Kim (2010) have shown 
that test simulations suggest a smaller plateau length 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

AISC (2016) doubly-symmetric
AISC (2016) singly-sym. & Unified (White 2008)
CSA Group (2014)
MacPhedran & Grondin (2009) rolled
MacPhedran & Grondin (2009) welded
SAA (1998)
CEN (2005) rolled - Sect. 6.3.2.3
CEN (2005) equivalent welded - Sect. 6.3.2.3
CEN (2005) rolled - Sect. 6.3.2.2
CEN (2005) equivalent welded - Sect. 6.3.2.2

tycb rEFKL

M
M

p

Fig. 1. Comparison of nominal LTB resistances for W27×84 beams (Fy = 50 ksi)  
and equivalent section welded beams subjected to uniform bending moment.
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noncompact-web girders of this nature tend to perform 
more like slender-web girders.

Given the preceding recommendations, the proposed 
LTB resistance curve for the W27×84 and equivalent welded 
section members is as illustrated by the dark bold curve in 
Figure 2. It should be noted that the proposed Lp is compa-
rable to the effective Lp values from the CEN (2005) Section 
6.3.2.2 equations and that the proposed inelastic LTB curve 
is approximately tangent to the theoretical elastic LTB curve 
at the proposed Lr.

This paper takes a fresh look at the predictions relative 
to the experimental data for uniform moment and moment 
gradient tests in the context of the unified flexural resistance 
equations (White, 2008) as well as the above-proposed 
modifications to these resistance equations. With respect to 
moment gradient cases, the paper focuses on tests in which 
the transverse loads are applied at braced locations. Moment 
gradient tests considering loads applied at nonbraced loca-
tions as well as load height effects are addressed by Toğay 
et al. (2016). The experimental results considered in this 
paper include the prior data from White and Jung (2008) and 
White and Kim (2008) plus additional data from Kusuda et 
al. (1960) and Righman (2005).

In this paper, the nominal design resistances are deter-
mined using inelastic buckling calculations based on 
inelastic stiffness reduction factors (SRFs) obtained from 
corresponding design LTB resistance equations (White et 
al., 2016a). This approach allows for a practical, yet reason-
ably rigorous, accounting for (1) continuity effects across 
braced points, including the restraint of more heavily 
yielded member segments by adjacent unbraced lengths that 

than indicated by the unified provisions (as well as by 
many current design specifications).

2. A smaller maximum stress level for elastic LTB of 
Fyr = 0.5Fyc (FL = 0.5Fyc in the context of the AISC 
Specification) should be utilized for all cross-section 
types, including hybrid girders (Subramanian and 
White, 2017b). This change recognizes the fact that 
the LTB resistance can be affected significantly by the 
combined influence of residual stresses, unavoidable 
geometric imperfections, and second-order lateral-
torsional displacement amplifications at unbraced 
lengths corresponding to the current Fyr (FL) value of 
0.7Fyc.

3. The noncompact web slenderness limit, λrw, should be 
modified to
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 (Subramanian and White, 2017b, 2017d). This 
change is based on observations, from physical tests 
and test simulations, that I-girders with relatively 
small flanges compared to the web area exhibit some 
reduction in their flexural resistances when their webs 
are near the current noncompact web limit. That is, 
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Fig. 2. Comparison of proposed LTB resistance for W27×84 beams (Fy = 50 ksi) and equivalent  
section welded beams subjected to uniform bending moment to current LTB resistance curves.
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are relatively elastic (i.e., elastic and inelastic LTB effective 
length effects), and (2) variations in the spread of yielding 
along the member lengths due to moment gradient effects 
(i.e., effects approximated by Cb factors in common manual 
calculations). The subject inelastic buckling calculations 
are implemented within the SABRE2 software (White et 
al., 2016a, 2016b). SABRE2 applies the SRFs associated 
with the selected design LTB resistance equations along 
with thin-walled, open-section beam theory for the member 
strength assessment. SABRE2 allows the choice of either 
the unified LTB provisions or the proposed modifications to 
the design strength equations.

It is important to note that accounting for moment gra-
dient effects, as well as end restraint effects from adjacent 
unbraced lengths and/or end connections, is essential to 
obtain any meaningful correlation between test and/or test 
simulation results and LTB strength predictions. The inelas-
tic buckling solutions using the approach implemented in 
SABRE2 provide, in effect, exact member LTB effective 
lengths (inelastic or elastic, as applicable) based on the 
selected design resistance equations. These capabilities pro-
vide an unprecedented capability for engineers to account 
accurately for the combined influence of moment gradient 
and end restraint effects on the inelastic LTB strength limit 
states. However, the accuracy of this approach depends criti-
cally on the proper definition of the underlying LTB strength 
curve.

To evaluate the quality of the current unified and rec-
ommended modified LTB strength equations, this paper 
provides estimates of reliability indices, in the context of 
building design, using the preceding SRF-based approach 
for the prediction of the LTB test resistances. The reliability 
indices are estimated across a full range of LTB slenderness 
values. An important aim of this paper is to compare the 
reliability indices determined using the unified LTB provi-
sions (which are the basis for the current AASHTO Specifi-
cations) to those obtained using the proposed modified LTB 
equations.

Lastly, the paper provides additional recommendations 
for LTB strength calculations in routine design, including a 
set of illustrative plots conveying the impact of the proposed 
changes.

OVERVIEW OF AISC, AASHTO AND UNIFIED 
LATERAL-TORSIONAL BUCKLING EQUATIONS

The lateral-torsional buckling (LTB) curves for I-section 
members in AASHTO (2016) and the AISC Specification 
(2016) consist of three distinct regions: the plateau region, 
the inelastic LTB region, and the elastic LTB region. The 
plateau resistance is equal to the plastic flexural strength for 
compact sections, while for noncompact web sections, it is 
the yield moment multiplied by the web plastification fac-
tor, Rpc. The plateau strength for slender-web sections is the 

yield moment reduced by the web bend-buckling factor, Rb 
(the parameter Rb in AASHTO is the same as the parameter 
Rpg in the AISC Specification). Members in uniform bend-
ing with effective unbraced lengths (KLb) greater than Lr are 
designed using the theoretical elastic LTB strength, where 
Lr is the limiting unbraced length at which residual stresses, 
geometric imperfections, and second-order amplification 
of the lateral-torsional displacements start to influence the 
nominal resistance for this type of loading. Members with 
KLb between Lp (the limiting length at which a member can 
attain the plateau strength) and Lr are designed using the 
inelastic LTB resistance, obtained by linearly interpolating 
between the plateau and the elastic LTB anchor points at 
Lp and Lr. It should be noted that both AASHTO and the 
AISC Specification give their LTB equations in terms of 
just the unsupported length between the braced points, Lb, 
recognizing the fact that the LTB resistance can be assessed 
conservatively and practically by assuming a LTB effective 
length factor of K = 1 in most situations. However, the com-
mentaries of both specifications explain that KLb may be 
used in place of Lb to obtain a more refined estimate of the 
LTB resistance when this beneficial refinement is merited.

The LTB equations in AASHTO and the AISC Specifica-
tion follow the unified provisions (White, 2008) with minor 
exceptions. The differences among the unified provisions, 
the AISC Specification, AASHTO, and proposed modified 
provisions (Subramanian and White, 2017b) are shown in 
Table 1. The reader is referred to the AISC Specification, 
AASHTO, or White (2008) for all other equations required 
to calculate the LTB strengths.

This paper focuses on the differences in the strength pre-
dictions between the unified and the proposed modified 
LTB equations. These differences are quantified directly as 
well as via estimated reliability indices associated with the 
two sets of provisions. The paper also provides additional 
recommendations for LTB strength calculations in routine 
design, including a discussion of the impact of the proposed 
modifications.

SHORTCOMINGS OF THE UNIFIED PROVISIONS

The studies conducted in this research are an improvement 
over the prior calibrations (White and Jung, 2008; White 
and Kim, 2008) with respect to several key aspects dis-
cussed next.

Inelastic versus Elastic Effective Length Effects

The prior calibration of the unified flexural resistance pro-
visions to experimental data (White and Jung, 2008; White 
and Kim, 2008) was conducted using approximate elastic 
effective length factors, Kelastic, calculated per Nethercot 
and Trahair (1976). When the critical unbraced length expe-
riences some yielding, the restraint provided by adjacent 
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directly on the specified design resistance equations. Simi-
lar approaches have been proposed by Trahair and Hancock 
(2004) in the context of the Australian standard (SAA, 1998) 
and by Kucukler et al. (2015a, 2015b) in the context of Euro-
code 3 (CEN, 2005). The inelastic buckling calculations 
strictly do not require the calculation of any effective length 
factors. One can simply use the inelastic buckling analysis 
results directly. However, effective lengths are a convenient 
way of quantifying the LTB design resistances as a function 
of the end restraint (warping, lateral bending, and/or lateral 
displacement) provided to the critical unbraced length of a 
member.

The use of computational tools such as SABRE2 provides 
a major advantage over approximate Kelastic or Kinelastic cal-
culations, in that the calculations are fast. Furthermore, the 
restraint from adjacent segments is implicitly accounted for, 
without the need for simplifying assumptions inherent in 
manual computations. For example, uniform moment tests 
conducted by Richter (1998) with several unbraced lengths 
within the test specimen, and with test fixtures provid-
ing restraint at the member ends, were assumed to have a 
K of 1.0 within the critical unbraced segments in the prior 
research by White and Jung (2004). [As noted earlier, the 
elastic LTB K factor estimates in these studies used the 
approach forwarded by Nethercot and Trahair (1976); this 

segments is typically more effective than when the critical 
segment is assumed to remain elastic (Subramanian and 
White, 2017b; Trahair and Hancock, 2004). This results in 
the theoretical Kelastic being larger than the true effective 
length factor. Subramanian and White (2017b) show that the 
resulting larger estimated plateau length, Lp, in the unified 
provisions is due to the implicit inelastic effective length fac-
tor, Kinelastic, being smaller than Kelastic.

Due to the calibration to experimental test strengths using 
a larger elastic effective unbraced length (KelasticLb) instead 
of the smaller and true inelastic effective length (KinelasticLb), 
the test data are shifted toward the right in LTB strength 
plots. That is, for a given experimentally determined test 
strength, the corresponding elastic effective length is gener-
ally larger than the true inelastic effective length. The test 
strengths are, hence, incorrectly taken to be higher at lon-
ger lengths, resulting in a falsely optimistic calibration to 
the data. The use of Kinelastic in the calibration to the test 
data correctly shifts the data toward the left in strength ver-
sus effective unbraced length plots compared to the prior 
calibrations.

Inelastic LTB effective length effects can be considered 
quite accurately and efficiently using tools such as SABRE2 
(White et al., 2016b), which perform buckling analyses 
using inelastic stiffness reduction factors (SRFs) based 

Table 1. LTB Equation Comparisons

Parameter Unified Provisions AISC Specification AASHTO Proposed Equations

Lp (doubly-symmetric, 
compact-web members 
with compact or 
noncompact flanges)

E F1.1r / yct E F1.76r / yy E F1.0r / yct E F0.63r / yct

Lp (all other I-section 
members)

E F1.1r / yct E F1.1r / yct E F1.0r / yct E F0.63r / yct

Fyr*
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* Fyr is denoted by FL in the AISC Specification.
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approach gives an estimate of K = 1 in Richter’s tests.] How-
ever, the authors have found that K is significantly smaller 
than 1.0 for the critical unbraced lengths when there are 
only three to five unbraced lengths (such as in Richter’s 
tests) due to restraint from the end fixtures. It is only in the 
presence of a large number of adjacent unbraced segments 
subjected to uniform moment that Kinelastic approaches  
1.0. SABRE2 implicitly accounts for the general elastic–
inelastic end restraint effects in the design calculation of the 
test strengths.

Inelastic versus Elastic Moment Gradient Effects

AASHTO and the AISC Specification apply a multiplica-
tive moment gradient modification factor, Cb, to the elastic 
and inelastic LTB regions of the design curves in the case 
of moment gradient loading. That is, the unified provisions 
and both of these specifications simply multiply (i.e., scale) 
the elastic or inelastic LTB resistance by Cb, while limiting 
the corresponding resistance to the plateau strength. Numer-
ous expressions for Cb exist in the literature—all of which 
are based on elastic buckling solutions. Subramanian and 
White (2017c) discuss the implications of using this elasti-
cally derived Cb in the inelastic LTB equations and report 
an “inelastic Cb” effect. That is, the basic Cb factor approach 
in the current AASHTO Specification and the AISC Specifi-
cation tends to overpredict the moment gradient effects due 
to partial yielding in the members. This effect is relatively 
small when the maximum moment occurs at a braced point, 
as observed in the original developments by Yura et al. 
(1978). However, it can be more significant for transversely 
loaded cases, where the maximum moment occurs within 
an unbraced length. Computational tools such as SABRE2 
implicitly account for this “inelastic Cb” effect. Thus, the 
calculated nominal strengths presented in this paper are 
expected to be more representative of the true member 
strengths.

EXPERIMENTAL TEST DATABASE

The experimental tests discussed in this paper are focused on 
noncomposite I-section members in which LTB is the con-
trolling flexural limit state. Tests governed by flange local 
buckling (FLB) and tension flange yielding (TFY) limit 
states are addressed in the referenced prior studies. With the 
exception of the additional tests included from Kusuda et 
al. (1960) and Righman (2005), details of the test configu-
rations, cross-section dimensions, and member properties 
are provided in White and Jung (2004) and White and Kim 
(2004). The data from the additional tests may be found in 
the corresponding reports. The prior datasets were a central 
focus in the development of the unified provisions (White, 
2008), which serve as one basis for the current AISC and 
AASHTO flexural resistance provisions.

In the current study, the flexural resistances are calcu-
lated using inelastic buckling analysis procedures (White et 
al., 2016a) implemented in SABRE2 (White et al., 2016b). 
Inelastic SRFs for LTB are calculated using the unified 
provisions as well as the proposed modified provisions. 
The corresponding resistances are referred to respectively 
as MnUnified and MnProposed. The test members are modeled 
using the measured geometry and separate measured flange 
and web yield strengths, where these data are available. The 
elastic modulus of the steel is taken as E = 29,000 ksi for all 
members. For rolled beams, the web-to-flange fillet areas 
are included in the models and in the underlying resistance 
calculations. Although this practice does not greatly affect 
the predicted strength of the members, it has been observed 
to give the best correlation with the test results (White and 
Jung, 2008). The web-to-flange fillet areas are taken as zero 
for welded sections.

The following detailed classifications of the test mem-
bers are the same as in White and Jung (2004) and White 
and Kim (2004). Members for which the flange dimensions 
or the web depths are reported only as nominal values, or 
where these dimensions are reported to less than three sig-
nificant digits, are considered as “nominal/approximate 
geometry.” All other tests, including those in which the web 
thicknesses are reported as nominal values, or where only 
a single cross-section yield strength is provided, are con-
sidered as “accurate measured geometry.” This is because 
of the minor influence of the web yield strength and thick-
ness on the flexural resistance compared with the flange 
dimensions and the web depths. For rolled sections where 
the cross-section properties listed in the test reports do not 
include the web-to-flange fillet areas, the web-to-flange fil-
let areas are taken equal to the difference between the area 
listed in nominal property tables and the area calculated 
from the nominal plate dimensions. The web-to-flange fillet 
yield strengths are taken to be equal to the yield strength of 
the flange material.

The results in the following sections are delineated 
according to the normalized slenderness, c, defined as 
KL F Eb yc( )/rt. The effective length factor, K, is back- 

calculated as the value that, when substituted into the pro-
posed LTB equations, yields the nominal resistance obtained 
from SABRE2 (based on the proposed equations). In the 
cases where the members attain the plateau resistance per 
SABRE2, the corresponding K factor is undetermined. In 
this case, K is calculated using the approximate elastic effec-
tive length procedure given by Nethercot and Trahair (1976), 
which is the procedure utilized in the prior development of 
the unified provisions (White, 2008). In the event that the 
plateau strength is not obtained using this Kelastic value, K is 
determined as the largest value for which the member attains 
the plateau strength. Although this is a coarse estimate of K, 
it is reasonable considering that the K factors are employed 
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the assumption that the resistance, R, and the load effect, 
Q, are log-normally distributed, the reliability index in the 
context of LRFD of steel building members is given by the 
expression

 

R

Q

V V

ln

R Q
2 2

β =

⎛
⎝⎜

⎞
⎠⎟

+  
(2)

where R and Q are the mean values of the resistance and 
load effects and VR and VQ are the respective coefficients of 
variation (Ellingwood et al., 1980; Ellingwood et al., 1982; 
Galambos, 2004; Galambos et al., 1982). The determination 
of R, Q, VR and VQ is described in detail in White and Jung 
(2008) and White and Kim (2008). The same procedures are 
adopted in this paper.

ASSESSMENT OF UNIFORM MOMENT TESTS

Figures  3 and 4 show the professional factors, Mtest/Mn, 
from SABRE2 for the proposed and the unified equations 
considering the rolled and welded member uniform bend-
ing tests from the experimental database. The normalized 
resistances are plotted versus the normalized slenderness 
c = KL F Eb yc( )/rt. The reader should note that c = 1 cor-
responds to the length Lp in the AASHTO Specification, 
whereas c = 1.1 corresponds to the length Lp in all cases with 
the exception of doubly-symmetric compact-web members 
having nonslender flanges in the AISC Specification (2016).

Tables  2 and 3 show the corresponding statistics on 
Mtest /Mn. The number of different quantities presented in the 
tables is substantial; however, this is necessary to assess the 
ability of the resistance equations to predict the LTB strength 
limit states for all potential I-section member geometries. 
The test configurations and characteristics are discussed in 
detail by White and Jung (2004). Among the tests in the 
prior database, cases with cover plates and tests with a web 
depth-to-compression flange width ratio, D/bfc, greater than 
7.5 are not considered. A similar restriction on D/bfc was 
employed by White and Jung (2004). The flexural resistance 
equations do not perform as well for the limited number of 
tests with D/bfc larger than this limit. Table 2 summarizes the 
results for all the tests, including both accurate and nominal/ 
approximate geometry. Table  3 shows the results only for 
the tests with accurate measured geometry. For c values less 
than or equal to 0.63, the predicted strengths are equal to the 
plateau flexural resistance both using the proposed as well 
as the unified provisions.

It can be observed from Figures  3 and 4 that there is 
generally a minor increase in the mean and minimum of 
Mtest/Mn for the proposed equations compared to the uni-
fied equations. It is also observed that the dispersion of the 
test data in the different regions of c is largely the same for 

only to classify the experimental tests into different ranges 
based on the “LTB slenderness” in this work.

There is one exception to the preceding procedure. In 
the tests by Suzuki and Kubodera (1973), elaborate test fix-
tures were employed that provided ideal, torsionally simply 
supported end conditions on the test unbraced length while 
developing uniform bending moment within the test. In 
these cases, K is equal to 1.0. When these tests are modeled 
in SABRE2, LTB resistances precisely corresponding to the 
nominal resistance equations with an unbraced length KLb = 
Lb are obtained.

In the prior unified resistance calculations (White, 2008), 
the LTB plateau length is recommended as L r1.1p t= E F/ y  
for all uniform bending cases, including rolled members. 
This equation is specified by AISC for all cross sections 
with the exception of doubly symmetric I-sections with 
compact webs and nonslender (i.e., compact or noncompact) 
flanges. AISC specifies L r1.76p y= E F/ y  for these section 
types. White and Jung (2008) and White (2008) explain that 
the latter of these AISC Specification equations provides 
an optimistic estimate of the plateau length and is, in fact, 
developed by (1) assuming that the design calculations will 
always use K = 1 and (2) dividing by an implicit K < 1 in the 
expression for Lp. The authors submit that a better approach 
is to allow engineers to apply an explicit K < 1 to Lb rather 
than hide the LTB effective length factor in the Lp equation. 
Alternatively, a more rigorous approach is to determine the 
LTB resistance directly, accounting for end restraint effects, 
via tools such as SABRE2 (White et al., 2016a, 2016b). 
In either of these situations, the use of L r1.76p y= E F/ y  
amounts to a double counting of the end restraint effects, 
and therefore, this equation is not appropriate.

The unified Lp value is slightly larger than the 
value employed by AASHTO (2016). AASHTO uses 
L r1.0 .p t= E F/ y

As noted by White and Kim (2008), although the col-
lected experimental data sets are quite extensive, they are 
not sufficient to encompass the multitude of cross-section 
types and loading and displacement boundary conditions 
that form the complete design space. The acute scarcity of 
the experimental test data in certain inelastic LTB cases is 
discussed further in the section just prior to the conclusions 
of this paper. The proposed LTB strength curve (key param-
eters of which are summarized in Table 1) is based on the 
experimental data as well as a wider range of test simula-
tions discussed by Subramanian and White (2017b, 2017c).

ESTIMATION OF RELIABILITY INDEX, β

The reliability indices presented in this paper are calculated 
as detailed in White and Jung (2008) and White and Kim 
(2008). These calculations, in turn, are based on the prior 
procedures established by Galambos et al. (1982). Based on 
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both calculations. This is corroborated by the coefficient of 
variation (COV) values reported in Tables 2 and 3. In these 
tables, the variables N and V denote the number of tests and 
coefficient of variation of the strength ratio Mtest/Mn. The 
following observations can be gleaned from Tables 2 and 3:

1. The statistics for c ≤ 0.63 indicate that the experimental 
tests have no trouble attaining the plateau strength at 
small unbraced lengths. The COV considering all the 
tests is approximately 4%.

2. The statistics for 0.63 < c ≤ 1 are largely similar for 
the proposed and unified equations, except for welded 

noncompact-web sections. For the tests of this type 
with accurate measured geometry, the proposed 
provisions give a slightly larger mean, Mtest/Mn, of 
1.04 versus 1.02 and a slightly smaller COV of 6.28% 
versus 7.71%. The tests listed in this category are all 
doubly-symmetric cross sections.

3. Rolled members in the range of 1 < c ≤ 2 show an 
increase of 0.05 in the mean and minimum values of 
Mtest/Mn using the proposed equations compared to the 
unified equations in Table 2. Welded members show an 
increase of 0.05 and 0.06 for these values within this 
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Fig. 3. Uniform moment professional factors Mtest/Mn for rolled members: (a) unified equations; (b) proposed equations.
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with accurate geometry increases from 0.90 with the 
unified equations to 0.94 when the proposed equations 
are used. The increase in these values is larger for 
welded members. The mean and minimum of the 
test data for all the welded members increase by 0.08 
by using the proposed equations (see Table  2). The 
increase is 0.06 for compact-web welded, 0.09 for 
noncompact-web welded, and 0.15 for slender-web 
welded members, considering all the available tests 
(Table  2). If only tests with accurate geometry are 
considered, the overall welded test mean and minimum 
Mtest/Mn values increase by 0.09 for 2 < c < 3. There 
are no compact-web welded members in this range 

range, considering the cases with nominal/approximate 
geometry. The trend is similar when only the tests with 
accurate measured geometry are considered (Table 3). 
Welded members with compact, noncompact and 
slender webs show increases in these values ranging 
from 0.05 to 0.09 in Table 2. The mean values change 
from slightly less than 1.0 to slightly greater than 1.0 
for many of the cases.

4. The statistics for rolled members in the range of  
2 < c ≤ 3 show an increase of 0.06 in the mean Mtest/Mn  
using the proposed equations. This result is observed 
considering all tests as well as tests with only accurately 
measured geometry. The minimum value for the tests 
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Fig. 4. Uniform moment professional factors Mtest/Mn for welded members: (a) unified equations; (b) proposed equations.
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Table 2. Mtest/Mn Statistics for Unified and Proposed LTB Equations— 
Uniform Bending Tests with Accurate and Nominal/Approximate Geometry

(a) Rolled Members

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 16 61 34 17 11 12

Min 0.99 0.89 0.91 0.90 0.95 0.88 0.93 0.85 0.90 0.91 0.92

Median 1.03 0.98 0.99 0.98 1.03 0.99 1.04 1.01 1.07 0.98 1.03

Max 1.14 1.08 1.11 1.13 1.22 1.10 1.18 1.07 1.14 1.12 1.19

Mean 1.04 0.97 0.99 0.98 1.03 0.99 1.05 0.99 1.05 1.00 1.05

V (%) 4.07 4.46 4.00 4.86 5.05 6.14 6.78 6.08 6.20 6.16 6.56

(b) All Welded Members

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 4 27 34 33 16 1

Min 1.04 0.90 0.92 0.81 0.86 0.79 0.87 0.76 0.82

Median 1.08 1.00 1.01 0.97 1.04 0.93 1.02 0.94 1.06

Max 1.11 1.15 1.17 1.04 1.12 1.27 1.50 1.05 1.24

Mean 1.07 0.99 1.01 0.97 1.03 0.94 1.03 0.92 1.03 1.07 1.17

V (%) 3.06 6.46 6.35 4.78 5.02 10.37 12.17 10.25 12.63

(c) Rolled and Welded Members Combined

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 20 88 68 50 27 13

Min 0.99 0.89 0.91 0.81 0.86 0.79 0.87 0.76 0.82 0.91 0.92

Median 1.04 0.98 1.00 0.97 1.03 0.94 1.04 0.98 1.07 1.00 1.04

Max 1.14 1.15 1.17 1.13 1.22 1.27 1.50 1.07 1.24 1.12 1.19

Mean 1.05 0.98 1.00 0.97 1.03 0.96 1.04 0.95 1.04 1.01 1.06

V (%) 4.01 5.21 4.93 4.84 5.00 9.34 10.56 9.17 10.32 6.20 7.06

(d) Welded Members with Compact Webs

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 3 16 20 18 10 0

Min 1.04 0.90 0.92 0.81 0.86 0.81 0.87 0.76 0.82   

Median 1.10 0.99 1.01 0.99 1.04 0.90 0.96 0.92 0.98   

Max 1.11 1.02 1.05 1.04 1.11 1.12 1.19 1.04 1.12   

Mean 1.08 0.97 0.99 0.98 1.03 0.93 0.99 0.91 0.98   

V (%) 3.40 4.56 4.83 5.42 5.34 9.46 9.71 11.06 12.19   
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middle of the inelastic LTB region in Table 2. When 
only the tests with accurate geometry are considered 
(Table  3), this COV is reduced. For example, in the 
range of 2 < c ≤ 3, the COV for welded members is 
reduced from 9.71% for all tests to 3.19% for accurately 
measured tests.

8. It is observed that the largest unconservatism of 
the unified equations is in the middle to end of the 
inelastic LTB region (2 < c ≤ 4). The unified equations 
overpredict the experimental test data by as much as 
14% for welded members with accurate geometry, and 
by as much as 32% for tests with nominal/approximate 
geometry (the minimum values of Mtest/MnUnified are 
0.88 and 0.76, respectively; therefore, MnUnified/Mtest is 
equal to 1.14 and 1.32, respectively). This is consistent 
with the observations by Subramanian and White 
(2017a, 2017b, 2017c) that the unified equations tend 
to overpredict the finite element test simulation data 
within the inelastic LTB region. These observations 
are a key reason the proposed modifications should be 
implemented in the AISC Specification and AASHTO.

Figure  5 shows the reliability indices, estimated as 
explained in the previous section. The target reliability 
index in the AISC LRFD Specification is 2.6 for statically 

considering only accurate geometry. The increases 
are 0.09 and 0.14 for both the minimum and mean 
values respectively for noncompact- and slender-web 
sections with accurate measured geometry. The mean 
values are closer to 1.0 with the proposed equations for 
several groups where the unified equations give values 
significantly less than 1.0.

5. The statistics for rolled members in the range of  
3 < c ≤ 4 show an increase of 0.05 in the mean when the 
proposed equations are used for all the tests, as well as 
for the tests having only accurate measured geometry. 
The mean of the data increases by 0.11 from 0.92 
with the unified equations to 1.03 when the proposed 
equations are used for the welded test specimens. 
There are no welded tests in this range with accurately 
measured geometry.

6. The statistics for rolled members show an increase 
of 0.05 and 0.04 in the mean of the data for nominal/
approximate and accurate geometry in the range c ≥ 4. 
There is only one welded member test in this range.

7. The COV for all the tests is largely similar for the 
proposed and unified equations in both Tables 2 and 
3. It is observed that the COV is larger for tests in the 

Table 2. Mtest/Mn Statistics for Unified and Proposed LTB Equations— 
Uniform Bending Tests with Accurate and Nominal/Approximate Geometry (cont’d)

(e) Welded Members with Noncompact Webs

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 0 5 5 4 0 0

Min 0.94 0.98 0.94 1.01 0.91 1.00     

Median 1.02 1.03 0.94 1.01 0.93 1.01     

Max 1.12 1.13 1.01 1.09 0.94 1.02     

Mean 1.02 1.04 0.95 1.03 0.92 1.01     

V (%) 7.71 6.28 3.59 3.28 1.13 0.68     

(f) Welded Members with Slender Webs

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 1 6 9 11 6 1

Min 0.93 0.94 0.91 0.97 0.79 0.94 0.85 1.02

Median 1.04 1.05 0.96 1.06 0.94 1.08 0.96 1.10   

Max 1.15 1.17 0.98 1.12 1.27 1.50 1.05 1.24 1.07 1.17

Mean 0.99 1.04 1.05 0.95 1.04 0.97 1.12 0.95 1.13   

V (%) 7.15 7.76 2.89 5.39 13.05 13.61 8.92 8.48   
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Table 3. Mtest/Mn Statistics for Unified and Proposed LTB Equations— 
Uniform Bending Tests with Accurate Measured Geometry

(a) Rolled Members

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 13 28 20 11 7 8

Min 1.00 0.93 0.93 0.93 0.99 0.90 0.94 0.92 0.97 0.94 1.00

Median 1.05 0.99 1.00 0.99 1.04 0.99 1.04 0.99 1.07 0.99 1.02

Max 1.14 1.08 1.08 1.13 1.22 1.10 1.18 1.03 1.09 1.10 1.12

Mean 1.05 0.99 1.00 1.00 1.05 1.00 1.06 0.99 1.04 1.00 1.04

V (%) 3.91 3.28 3.13 4.46 4.68 6.42 7.29 3.91 4.14 5.34 4.63

(b) All Welded Members

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 2 13 16 11 0 0

Min 1.05 0.93 0.94 0.91 0.97 0.88 1.00     

Median 1.02 1.03 0.96 1.05 0.93 1.04     

Max 1.11 1.15 1.17 1.01 1.12 0.95 1.09     

Mean 1.08 1.03 1.04 0.95 1.04 0.92 1.04     

V (%) 6.55 6.29 3.06 4.55 2.14 3.19    

(c) Rolled and Welded Members Combined

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 15 41 36 22 7 8

Min 1.00 0.93 0.93 0.91 0.97 0.88 0.94 0.92 0.97 0.94 1.00

Median 1.05 1.00 1.01 0.97 1.04 0.94 1.04 0.99 1.07 0.99 1.02

Max 1.14 1.15 1.17 1.13 1.22 1.10 1.18 1.03 1.09 1.10 1.12

Mean 1.06 1.00 1.01 0.98 1.04 0.96 1.05 0.99 1.04 1.00 1.04

V (%) 3.84 4.80 4.77 4.41 4.52 6.22 5.59 3.91 4.14 5.34 4.63

(d) Welded Members with Compact Webs

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 1 2 2 0 0 0

Min 1.00 1.01 0.98 1.05       

Median 1.01 1.02 0.99 1.06       

Max 1.02 1.04 0.99 1.06       

Mean 1.11 1.01 1.02 0.99 1.06       

V (%) 1.59 1.68 0.16 0.71      
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White and Jung (2008) because of the more accurate con-
sideration of end restraint effects in the calculation of the 
ordinate values and the use of the more rigorous K factors in 
the calculation of the abscissa (Kinelastic vs. Kelastic).

The following can be gleaned from Figure 5:

1. The reliability in the inelastic and less slender elastic 
LTB regions is increased by using the proposed 
equations. The target reliability is based on a live load–
to–dead load ratio (L/D) of 3. For rolled members, 
the corresponding reliability index is as low as 2.4 for 
the unified equations in the region c ≥ 4. This value is 
improved to 2.7.

2. The reliability index for welded members is improved 
from 2.2 and 2.1 to 2.5 and 2.5 for L/D  = 3  in the 
ranges of 2 < c ≤ 3 and 3 < c ≤ 4 for the tests that 
include nominal/approximate geometry. For tests with 
accurate geometry, both values increase from 2.5 to 2.9 
for L/D = 3.

3. With the proposed equations, one obtains a more 
uniform reliability across all the LTB slenderness 
ranges.

determinate compact-section beams under uniform moment, 
based on a live load–to–dead load ratio (L/D) of 3. Bartlett 
et al. (2003) and Galambos (2004) have shown that 2.6 is a 
reasonable lower-bound reliability index for these member 
types when discretization error is not considered. In addi-
tion, White (2008) explains that the reliability index is 2.6 
corresponding to the ASCE 7 load model and elastic LTB 
of general statically determinate beams. Rolled beams in 
general have been observed to have higher reliability than 
welded members (Galambos, 2004; White and Jung, 2008; 
White and Kim, 2008).

Figure  5 shows the reliability indices for various live 
load–to–dead load ratios, given a resistance factor, ϕb, of 
0.9. The results presented in this paper do not consider dis-
cretization error (Bartlett et al., 2003). In cases where there 
are fewer than four tests, the reliability estimates are very 
coarse due to the sparsity of the test data. The evaluation of 
the reliability index for elastic LTB is discussed in White 
and Jung (2008) and is not reproduced here.

Figure 5 shows the reliability indices for both the unified 
and the proposed equations. The values for the unified equa-
tions are different in this paper compared to those shown in 

Table 3. Mtest/Mn Statistics for Unified and Proposed LTB Equations— 
Uniform Bending Tests with Accurate Measured Geometry (cont’d)

(e) Welded Members with Noncompact Webs

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 0 5 5 4 0 0

Min 0.94 0.98 0.94 1.01 0.91 1.00     

Median 1.02 1.03 0.94 1.01 0.93 1.01     

Max 1.12 1.13 1.01 1.09 0.94 1.02     

Mean 1.02 1.04 0.95 1.03 0.92 1.01     

V (%) 7.71 6.28 3.59 3.28 1.13 0.68    

(f) Welded Members with Slender Webs

 c ≤ 0.63 0.63 < c ≤ 1 1 < c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/Mn

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

Mtest/
MnUnified

Mtest/
MnPr

N 1 6 9 7 0 0

Min 0.93 0.94 0.91 0.97 0.88 1.02     

Median 1.04 1.05 0.96 1.06 0.94 1.06     

Max 1.15 1.17 0.98 1.12 0.95 1.09     

Mean 1.00 1.04 1.05 0.95 1.04 0.92 1.06     

V (%) 7.15 7.76 2.89 5.39 2.64 2.67     
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ASSESSMENT OF MOMENT GRADIENT TESTS

Figures 6 and 7 show how the moment gradient experimen-
tal test results compare with results from SABRE2 for the 
unified and the proposed equations. Tables  4 and 5 show 
the results for the rolled and welded cross sections from the 
experimental database. The test configurations are detailed 
in White and Kim (2004), except for the tests from Kusuda 
et al. (1960) and Righman (2005). Among the tests in the 
prior database, tests containing cover plates and tests with a 
ratio of web depth to compression flange width D/bfc > 7.5 

are not considered in the statistics presented in this paper.
As in the case of the uniform moment tests, the parameter 

c is calculated based on the Kinelastic value that yields the 
same theoretical strength as the inelastic buckling solution 
in SABRE2. In determining the Kinelastic to be used in the 
expression for c, Cb is calculated from the equation devel-
oped by Salvadori (1955), 
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(a) All tests (accurate and nominal/approximate geometry)—141 rolled members

(b) All tests (accurate and nominal/approximate geometry)—107 welded members

(d) Tests with accurate measured geometry—87 rolled members

(e) Tests with accurate measured geometry—42 welded members

(f) Tests with accurate measured geometry—129 rolled and welded members combined

(c) All tests (accurate and nominal/approximate geometry)—248 rolled and welded members combined

Fig. 5. Reliability indices for uniform moment tests at various ranges of c = KL rF Eb tyc( )  and  
live load–to–dead load ratios (L/ D), ϕ = 0.9; unified provisions (left) and proposed equations (right).
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load-height effects are predominant, are evaluated by Toğay 
et al. (2016). It should be noted that the preceding Cb approx-
imation influences only the abscissa within the plots and the 
categorization of the tests in terms of their LTB slenderness 
in the tables because Equation 3 is used only in estimating 
Kinelastic. The ordinate values are determined directly using 
SABRE2 (White et al., 2016a, 2016b).

Similar to the uniform bending tests, there is one excep-
tion to the earlier calculation of Kinelastic. A number of the 
moment gradient tests involve three-point bending with 
equal unbraced lengths on each side of the braced point at 
the member midspan. In these cases, K  = 1. When these 
tests are modeled in SABRE2, rigorous LTB resistances are 

which is Equation C-F1-1 in the AISC Specification Com-
mentary, where M1 and M2 are the smaller and larger 
moments at the ends of the unbraced lengths, respectively, 
and M1/M2 is positive for reversed curvature bending. This 
expression gives a better lower-bound elastic Cb factor com-
pared to AISC Specification Equation F1-1 for cases where 
the moment diagram is linear between braced points. For 
example, given an unbraced length with zero moment at 
one end and maximum moment at the other end, Equation 3 
gives Cb  = 1.75 versus Cb  = 1.67 using AISC Specifica-
tion Equation F1-1. All the loading cases discussed in this 
paper fall under this category. Test cases where transverse 
loads are applied away from the brace points, and where 
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Fig. 6. Moment gradient professional factors Mtest/Mn for rolled members: (a) unified provisions; (b) proposed equations.
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Fig. 7. Moment gradient professional factors Mtest/Mn for welded members: (a) unified provisions; (b) proposed equations.

obtained corresponding to the nominal resistance equations 
with an unbraced length KLb = Lb, including an “inelastic 
Cb” effect.

The following can be observed from Figures 6 and 7:

1. Both the unified equations and the proposed equations 
tend to be conservative for smaller values of c. This is 
due to strain hardening effects, which are a predominant 
feature of moment gradient tests of compact-section 
members with short unbraced lengths.

2. Similar to the trends observed for the uniform moment 
tests, the proposed equations result in smaller predicted 

flexural resistances, resulting in larger professional 
factors Mtest/Mn. This changes the Mtest/Mn for rolled 
members from values that are, in some cases, less than 
1.0 to values that are predominantly 1.0 or higher.

3. An increase in the professional factors is also evident 
for the welded member tests, especially at longer 
unbraced lengths [e.g., see the data points from Frost 
and Schilling (1964) and Righman (2005) in Figure 7]. 
However, a number of these Mtest/Mn values are still 
less than 1.0.
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Table 4. Mtest/Mn Test Statistics for Unified and Proposed LTB Equations— 
Moment Gradient Tests with Accurate and Nominal/Approximate Geometry

(a) Rolled Members

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 54 15 3 2

Min 0.98 0.98 0.97 1.01 0.98 0.98 0.99 1.04

Median 1.20 1.20 1.06 1.06 1.01 1.01 1.02 1.07

Max 1.48 1.48 1.31 1.31 1.04 1.05 1.05 1.09

Mean 1.21 1.21 1.08 1.09 1.01 1.01 1.02 1.07

V (%) 10.24 10.24 8.81 7.92 3.00 3.18 3.52 3.12

(b) All Welded Members

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 53 7 7 3

Min 0.92 0.92 0.85 0.86 0.81 0.95 1.01 1.07

Median 1.19 1.19 1.01 1.01 0.98 1.12 1.02 1.08

Max 1.62 1.62 1.08 1.08 1.15 1.24 1.13 1.21

Mean 1.18 1.18 0.98 1.01 0.98 1.08 1.05 1.12

V (%) 11.74 11.73 8.33 7.37 12.67 9.73 6.61 6.91

(c) Rolled and Welded Members Combined

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 107 22 10 5

Min 0.92 0.92 0.85 0.86 0.81 0.95 0.99 1.04

Median 1.20 1.20 1.04 1.06 1.00 1.04 1.02 1.08

Max 1.62 1.62 1.31 1.31 1.15 1.24 1.13 1.21

Mean 1.19 1.19 1.05 1.06 0.99 1.06 1.04 1.10

V (%) 10.98 10.98 9.58 8.50 10.45 8.76 5.35 5.87

(d) Welded Members with Compact Webs

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 37 1 4 3

Min 0.92 0.92 0.98 1.04 1.01 1.07

Median 1.21 1.21 1.06 1.13 1.02 1.08

Max 1.36 1.36 1.15 1.24 1.13 1.21

Mean 1.18 1.18 1.03 1.08 1.06 1.13 1.05 1.12

V (%) 10.99 10.99 6.81 7.09 6.61 6.91
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4. Two data points [one from Rockey and Skaloud (1972) 
and one from Righman (2005)] have essentially the 
same Mtest/Mn with both the proposed and unified 
equations. This is because these tests achieve the 
plateau resistance in both predictions.

Table  4 shows the results for all tests, including cases 
with nominal/approximate geometry, and Table 5 shows the 
results for tests with only accurate geometry. Values of c that 
are less than or equal to 2.0 fall on the plateau of the LTB 
curves for both the unified and proposed provisions.

The following can be gleaned from Tables 4 and 5:

1. The test statistics for c ≤ 2 indicate that the experimental 
tests have no trouble attaining the plateau strength 
and that both the unified and proposed equations are 
conservative. The mean Mtest/Mn is as high as 1.21 for 
rolled members, both when considering all the tests 
and when considering only accurate geometry. The 
mean Mtest/Mn for welded members is 1.11 for tests 
with accurate geometry and 1.18 for tests that include 
members with approximate geometry. The COV is 
similar for the unified and proposed equations. The 
COV is between 10 and 11% when the rolled and 
welded members are combined as one data set.

2. The test statistics for rolled members in the range of 
2 < c ≤ 3 show a small increase in the mean Mtest/Mn 
from 1.08 to 1.09 when using the proposed versus the 
unified equations. This is observed for all tests as well 
as tests with accurate measured geometry in this range. 
For rolled members, the minimum value of Mtest/Mn 
for accurate geometry increases from 0.97 (unified 
equations) to 1.01 (proposed equations). The mean 
of the test data for all welded members (including 
approximate geometry) increases from 0.98 to 1.01 
when using the proposed equations within this range of c.  
The Mtest/Mn increases from 1.03 to 1.08 for a single 
compact-web welded member, and the mean Mtest/Mn 
increases from 0.98 to 0.99 for slender-web welded 
members. There are no noncompact-web members 
in this range. All the slender-web welded members 
considered here have accurate measured geometry. 
There are no tests with compact or noncompact webs 
with accurate geometry.

3. The maximum Mtest/Mn for rolled members in the 
range of 3 < c ≤ 4  increases from 1.04 to 1.05 when 
using the proposed equations for all tests as well as 
tests with accurately measured geometry. The mean 
of the data increases from 0.98 (unified equations) 

Table 4. Mtest/Mn Test Statistics for Unified and Proposed LTB Equations— 
Moment Gradient Tests with Accurate and Nominal/Approximate Geometry (cont’d)

(e) Welded Members with Noncompact Webs

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 8 0 0

Min 1.04 1.04

Median 1.08 1.08

Max 1.15 1.15

Mean 1.09 1.09

V (%) 3.49 3.51

(f) Welded Members with Slender Webs

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 8 6 3 0

Min 1.05 1.05 0.85 0.86 0.81 0.95

Median 1.21 1.21 1.00 1.00 0.83 0.95

Max 1.62 1.62 1.08 1.08 0.98 1.13

Mean 1.25 1.25 0.98 0.99 0.87 1.01

V (%) 15.43 15.41 8.96 7.40 10.86 10.29
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Table 5. Mtest/Mn Statistics for Unified and Proposed LTB Equations— 
Moment Gradient Tests with Accurate Measured Geometry

(a) Rolled Members

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 52 13 3 2

Min 0.97 0.98 0.97 1.01 0.98 0.98 0.99 1.04

Median 1.21 1.21 1.06 1.06 1.01 1.01 1.02 1.07

Max 1.48 1.48 1.31 1.31 1.04 1.05 1.05 1.09

Mean 1.21 1.21 1.08 1.09 1.01 1.01 1.02 1.07

V (%) 10.05 10.05 9.45 8.49 3.00 3.18 3.52 3.12

(b) All Welded Members

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 30 6 3 2

Min 0.92 0.92 0.85 0.86 0.81 0.95 1.01 1.07

Median 1.11 1.11 1.00 1.00 0.83 0.95 1.01 1.08

Max 1.27 1.27 1.08 1.08 0.98 1.13 1.02 1.08

Mean 1.11 1.11 0.98 0.99 0.87 1.01 1.01 1.08

V (%) 7.71 7.71 8.96 7.40 10.86 10.29 0.62 0.53

(c) Rolled and Welded Members Combined

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 82 19 6 4

Min 0.92 0.92 0.85 0.86 0.81 0.95 0.99 1.04

Median 1.16 1.16 1.03 1.03 0.98 1.00 1.01 1.08

Max 1.48 1.48 1.31 1.31 1.04 1.13 1.05 1.09

Mean 1.18 1.18 1.05 1.06 0.94 1.01 1.02 1.07

V (%) 10.16 10.16 10.21 9.10 10.29 6.81 2.10 1.89

(d) Welded Members with Compact Webs

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 18 0 0 2

Min 0.92 0.92     1.01 1.07

Median 1.12 1.12     1.01 1.08

Max 1.27 1.27     1.02 1.08

Mean 1.12 1.12     1.01 1.08

V (%) 9.07 9.07     0.62 0.53
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to 1.08 (proposed equations) for welded test sections 
with nominal/approximate geometry included within 
this range of c. The mean of the data increases from 
0.87 to 1.01 for welded members when only tests with 
accurate geometry are considered. Clearly, 0.87 is 
a low value for the mean of the data. The minimum  
Mtest/Mn for these section types in this range is only 
0.81 using the unified equations. It increases to 0.95 
using the proposed equations. However, only three 
tests, each with accurate geometry, are available for 
each of the rolled and welded member categories in 
this LTB region.

4. The test statistics for rolled members show an increase 
in the mean of the data from 1.02 to 1.07 for both 
nominal/approximate and accurate geometry in the 
range c ≥ 4. The mean Mtest/Mn for the welded members 
increases from 1.05 to 1.12 for the tests with accurate 
and nominal/approximate geometry and 1.01 to 1.08 
for the tests with accurate measured geometry in this 
range. However, there are only two welded and two 
rolled member tests in this range that have accurate 
measured geometry.

5. The COV for all the tests is largely similar for the 
proposed and unified equations in Tables  4 and 5. 

This is the same as the trend observed for the uniform 
moment tests.

6. For the moment gradient tests, it is observed that the 
largest unconservatism in the unified equations is in the 
inelastic LTB region (3 < c ≤ 4), similar to the behavior 
for the uniform moment tests. The unified equations 
overpredict the experimental test data by as much as 
23% for welded members with accurate and nominal/
approximate geometry, while the proposed equations 
overpredict the data by as much as 5% (the minimum of 
Mtest/Mn in this range is 0.81 for the unified provisions 
and 0.95 for proposed equations; therefore, Mtest/Mn = 
1.23 and 1.05, respectively). This overprediction of 
the test data is manifested clearly in the low reliability 
indices presented in Figure 8 and is discussed in detail 
next. The predictions by the current AISC Specification 
equations are identical to the unified provisions for all 
of these tests.

Figure 8 shows the reliability indices for the moment gra-
dient tests, estimated as explained in the previous section on 
uniform moment tests. The following can be gleaned from 
this figure:

1. The reliability with respect to LTB is increased across 
all the ranges of LTB slenderness by using the proposed 

Table 5. Mtest/Mn Statistics for Unified and Proposed LTB Equations— 
Moment Gradient Tests with Accurate Measured Geometry (cont’d)

(e) Welded Members with Noncompact Webs

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 7 0 0 0

Min 1.04 1.04

Median 1.09 1.09

Max 1.15 1.15

Mean 1.09 1.09

V (%) 3.73 3.76

(f) Welded Members with Slender Webs

 c ≤ 2 2 < c ≤ 3 3 < c ≤ 4 c ≥ 4

 
Mtest/

MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

Mtest/
MnUnified Mtest/MnPr

N 5 6 3 0

Min 1.05 1.05 0.85 0.86 0.81 0.95   

Median 1.12 1.12 1.00 1.00 0.83 0.95   

Max 1.21 1.21 1.08 1.08 0.98 1.13   

Mean 1.13 1.13 0.98 0.99 0.87 1.01   

V (%) 6.65% 6.64% 8.96 7.40 10.86 10.29   
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are considered together, the proposed equations give a 
reliability index estimate of 2.8 and 2.7 in these ranges 
of c.

3. For L/D  = 3, the reliability index obtained using the 
unified equations is particularly low (β  = 1.9) for 
welded members with accurate geometry in the region 
3 < c ≤ 4. Figures 9 and 10 show the reliability indices 
for the welded members with accurate test geometry, 
considering two different ranges of Cb. Figure  9 
summarizes the results for the unified provisions, 
whereas Figure  10 corresponds to the proposed 

equations. For rolled members, the target reliability of 
2.6 for L/D = 3 is achieved for all ranges of c with the 
unified provisions. The estimated minimum reliability 
index is increased to 2.8 by using the proposed 
equations.

2. For tests that include nominal/approximate geometry 
and L/D = 3, the reliability index for welded members 
is improved from 2.5 and 2.3 to 2.7 and 2.9  in the 
ranges 2 < c ≤ 3 and 3 < c ≤ 4. For tests with accurate 
geometry, the values respectively increase from 2.4 and 
1.9 to 2.6 and 2.5. When welded and rolled members 
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Fig. 8. Reliability indices for moment gradient tests at various ranges of c = KL rF Eb tyc( )  and  
live load–to–dead load ratios (L/D), ϕ = 0.9; unified provisions (left) and proposed equations (right).
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equations. The plots on the left show the results for all 
the tests that range from Cb = 1.0 to Cb = 1.3. The plots 
on the right are for tests with Cb = 1.75. It is observed 
that the moment gradient tests with the smaller Cb 
yield a lower estimated reliability index.

4. From Table 5, it can be seen that there are only three 
welded members in the range 3 < c ≤ 4, all of which 
have slender webs. Two out of these three tests are from 
Righman (2005) and were not included in the prior 
database calibration by White and Kim (2008). These 
test cross sections are extremely singly symmetric 
(Iyc/Iyt < 0.3) in addition to having slender webs (λw > 
λrw). Clearly, the current AASHTO equations are an 
inadequate predictor for these tests.

IMPACT OF PROPOSED MODIFICATIONS ON 
ROUTINE DESIGN STRENGTH CALCULATIONS

The preceding sections show that the proposed LTB equa-
tions result in a clear improvement in achieving a more uni-
form level of reliability across all ranges of LTB slenderness 
within the plastic and inelastic buckling ranges, consistent 
with the AISC LRFD Specification target of 2.6 for statically 
determinate beams and a live load–to–dead load ratio of 3. 
These reliability estimates are based on refined inelastic/
elastic buckling solutions associated with the inelastic stiff-
ness reductions implied by the LTB design equations (White 

et al., 2016a, 2016b). As noted in the Introduction, accurate 
accounting for the moment gradient and end restraint effects 
on critical unbraced lengths is essential to achieving any 
meaningful correlation among experimental test data, test 
simulation results, and LTB strength predictions.

In routine practice, designers commonly assume K = 1.0 
when calculating member LTB resistances. In these situa-
tions, when considering shorter and shorter critical unbraced 
lengths within the inelastic LTB range, the more extensive 
yielding within the critical unbraced length commonly results 
in a “true” LTB K factor that can be significantly less than 
1.0. Related to this attribute, Yura et al. (1978) stated in the 
context of compact-section beams, “For uniform moment, 
the theory indicates that a very small bracing spacing of 2 ft. 
is required just to reach Mp … The apparent disagreement at 
the Mp level is due mainly to the torsionally pinned bound-
ary conditions assumed in the theory. A laboratory beam 
that models actual conditions in practice must have adjacent 
spans to generate the moments. These spans will then also 
offer some restraint. Also, for beams with small unbraced 
lengths, the effects of boundary conditions are more domi-
nating.” Based on this behavior, the AISC Specifications 
have traditionally divided by an implicit effective length 
factor when setting the limiting length, Lp, for the plateau 
of the LTB resistance curves (White, 2008). With the advent 
of the 2005 AISC Specification (AISC, 2005), this practice 
has been limited to the Lp for doubly-symmetric nonslender 
flange members (i.e., 1.76 ry E F/ y ). As demonstrated by 

C(a) b ≤ 1.3 (b) Tests with Cb = 1.75                       

Figure 9: Estimated reliability indices for the uni�ed provisions, L/D = 3 and ϕ = 0.9 - moment gradient tests of 
welded members with accurate test geometry  
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Fig. 9. Estimated reliability indices for the unified provisions, L/D = 3 and ϕ = 0.9;  
moment gradient tests of welded members with accurate test geometry. 

Figure 10: Estimated reliability indices for the proposed equations, L/D = 3 and φ = 0.9 - moment gradient tests of 
welded members with accurate test geometry  
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Fig. 10. Estimated reliability indices for the proposed equations, L/D = 3 and ϕ = 0.9;  
moment gradient tests of welded members with accurate test geometry. 
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The following observations can be gleaned from Fig-
ures 11 through 15:

1. Figure 11 conveys the relationship between the unified 
and proposed LTB resistance curves for uniform 
bending of all types of slender-web members. One can 
observe that the recommended reduction relative to the 
unified resistance curve, which is identical to the AISC 
Specification LTB strength curve for these member 
types, ranges from 6.2% at the current Lp limit (i.e., 
at L rb tEF / /y  = 1.1) to 15.7% at the current unified/
AISC Specification Lr limit. The proposed and current 
curves are coincident at normalized lengths larger 
than 4.44 (i.e., at lengths larger than Lr based on the 
proposed FL  = 0.5Fyc). The inelastic LTB portion of 
the recommended strength curve is nearly tangent to 
the theoretical elastic LTB curve at the proposed values 
of Lr.

2. Figure  12 shows comparable slender-web member 
curves for a representative moment gradient case with 
Cb = 1.3. In this case, there is no difference between 
the current and the proposed strength curves for 
normalized lengths smaller than 2.48 or larger than 
4.44. The maximum difference between the curves is 
again 15.7%, corresponding to the current Lr.

3. Figure  13 shows the current and proposed LTB 
resistance curves for W36×150 members, which are 
representative of relatively lightweight, wide-flange 
rolled beams, subjected to uniform bending. It should 
be noted that for normalized lengths smaller than 
1.8, the moment capacity of these members is larger 
than the yield moment My, and thus the member 
compression flange is extensively yielded throughout 

the correlations of the unified and proposed LTB equations 
with the experimental data, the use of this Lp equation is 
overly optimistic if employed with any LTB calculations that 
accurately account for end restraint effects. The use of this 
equation along with any other accounting for K < 1 amounts 
to a double counting of the end restraint effects. In addition, 
the equation Lp  = 1.76 ry E F/ y  is inappropriate if one is 
comparing to the results of test simulations conducted using 
ideal torsionally simply supported end conditions (because 
this equation implicitly assumes that the unbraced length 
has significant end restraint).

In the context of the routine use of K = 1.0 in LTB calcu-
lations, and based on all of the earlier considerations, it is 
recommended that the expression for Lp can be divided by 
K = 0.8 for all types of I-section members. Even in beams 
that have physical end conditions that are very close to ideal 
torsionally simply supported, it is common to observe some 
incidental restraint. Furthermore, it can be inferred from 
Figures  5 and 8 (and Figures  3, 4, 6 and 7) that a small 
increase in Lp of this magnitude can be tolerated in terms of 
its influence on the estimated reliability.

Figures  11 through 15 show the impact of the rec-
ommended modifications relative to the corresponding 
unified resistance equations, including division of the pro-
posed Lp equation by K = 0.8, resulting in the use of Lp = 

r0.63 0.8t E F/ /yc r0.8 .t= E F/ yc  The moment capacity 
ordinate is normalized by the section plateau resistance, 
Mmax, for the homogeneous slender-web member cases, 
where Mmax  = RpgMyc using the AISC Specification nota-
tion or RbMyc using the AASHTO notation. The ordinate is 
normalized by the section yield moment My for the compact 
rolled-section member cases. The abscissa is the normalized 
unbraced length L rb tEF / /y  in all the plots.
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Fig. 11. Current (unified) and proposed LTB  
strength curves for slender-web I-section members  

subjected to uniform bending moment.
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Fig. 12. Current (unified) and proposed LTB strength  
curves for slender-web I-section members subjected  

to moment gradient loading with Cb = 1.3.
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the unbraced length. The reduction in the resistance 
relative to the current unified values varies from 6.0% 
at the normalized current unified Lp value of 1.1 to 
8.9% at the current unified (and AISC Specification) 
Lr, which corresponds to a normalized length of 4.12. 
The curves become coincident for normalized lengths 
larger than 5.05, corresponding to the proposed Lr. 

4. Figure 14 shows the results for the current and proposed 
W36×150 strength curves for a moment gradient case 
with Cb = 1.3. The curves are coincident for normalized 
lengths less than 2.53 and greater than 5.05. The largest 
reduction relative to the current unified resistance is 
again 8.9%. 

5. Lastly, Figure  15 shows the results for W14×257 
column-type rolled members. This is a representative 

intermediate-weight column-type section. In this 
case, the recommended and current unified curves are 
practically coincident throughout the lengths shown in 
the plot. One should note that a normalized length of 
7.2 corresponds to Lb/ry = 200; therefore, it is expected 
that normalized lengths larger than 7.2 would be rare. 

SHORTAGE OF EXPERIMENTAL DATA

It is evident from Tables 2 through 5 that despite the large 
total number of experimental tests used in the calibration 
of the AASHTO Specification LTB curves, there is a pau-
city of data in the inelastic LTB region. This is particularly 
the case for welded members with unbraced lengths close 
to Lr as defined by the proposed equations. For example, 
from Tables 2 and 3, it is seen that there is only one welded 
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Fig. 13. Current (unified) and proposed LTB strength curves for W36×150 members subjected to uniform bending moment.
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Fig. 14. Current (unified) and proposed LTB  
strength curves for W36×150 members subjected  

to moment gradient loading with Cb = 1.3. 

Fig. 15. Current (unified) and proposed LTB strength curves for 
W14×257 members subjected to uniform bending moment.
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provide estimates of the reliability index that are all 
approximately equal to or greater than the intended 
values for statically determinate members in the AISC 
Specification. The sparsity of experimental tests in 
certain regions of the design space is countered by a 
large number of additional finite element test simulation 
studies in Subramanian and White (2017b, 2017c). 
Several important experimental tests are included that 
were not available at the time of the calibrations by 
White and Jung (2008) and White and Kim (2008). 
These tests include extreme singly symmetric slender-
web cross sections with unbraced lengths in the 
inelastic LTB region. These tests indicate a relatively 
low reliability index for the unified provisions within 
the intermediate inelastic LTB range. The proposed 
equations address this shortcoming.

2. The use of inelastic SRFs in LTB calculations provides 
a practical means of accurately representing the 
restraining effects from adjoining unbraced lengths, 
as well as the moment gradient effects associated 
with partial yielding. The calculations for the effective 
length and moment gradient factors (K and Cb) in 
the prior calibration efforts have involved various 
simplifying assumptions. These simplifications, along 
with the availability of new test data subsequent to 
the prior calibration efforts, result in smaller levels of 
reliability than intended for the LTB strength curve 
in certain cases. This is particularly the case when 
the unified provisions are employed in the context 
of accurate accounting of end restraint and moment 
gradient effects, such as can be accomplished with 
practical inelastic buckling analysis methods.

Although the inelastic buckling calculations provide 
better estimates of the true strengths, engineers may also 
calculate the LTB design resistance using theoretical elas-
tic effective length factors for the unbraced length, as given 
by Nethercot and Trahair (1976), or using other estimates. 
Elastic estimates provide larger values of K than those deter-
mined from inelastic buckling calculations. The LTB resis-
tances thus calculated tend to be conservative relative to the 
“true” solutions. However, it should be noted that when end 
warping and/or lateral bending restraint are accounted for in 
the buckling calculations of members subjected to moment 
gradient, the combined effects of the commonly used K 
and Cb factors can lead to higher strength predictions than 
obtained using tools such as SABRE2 or refined finite ele-
ment test simulations (Subramanian, 2015). That is, the Cb 
factor equations, which are commonly derived assuming 
torsionally simply supported end conditions, are not neces-
sarily a good representation of the moment gradient effects 
in unbraced lengths having significant end warping and/or 
lateral bending restraint.

member experimental test in the region c ≥ 4 subjected to 
uniform moment. This test is of a welded member with a 
slender web and nominal/approximate geometry. There are 
no experimental test data for welded members with accu-
rate geometry or for members with compact and noncom-
pact webs in this region. Table  3 shows further that there 
are no test data for welded members with compact webs and 
accurate measured geometry in the region 2 < c ≤ 3 and that 
there are only two tests in the region 1 < c ≤ 2. The number 
of noncompact-web welded member tests in these regions is 
five or less, with only a slightly higher number of available 
tests for slender-web members.

Tables 4 and 5 show that there is a scarcity of experimen-
tal test data in certain regions for both rolled and welded 
I-section members subjected to moment gradient loading. 
There are only three tests in the region 3 < c ≤ 4 and two in 
the region c ≥ 4, for both rolled and welded members with 
accurate geometry. There are no welded member tests with 
compact webs in the regions 2 < c ≤ 3 and 3 < c ≤ 4 and only 
two tests in the region c ≤ 4. There are no test data for welded 
members with noncompact webs for c > 2. While there are 
three slender-web welded member tests in the region 3 < c ≤ 
4, it is important to note that two of these tests are from 
Righman (2005) and were not included in the prior calibra-
tion (White, 2008). Figures 9 and 10 show that the reliability 
is substantially improved in this region using the proposed 
equations. The unified equations are extremely unconserva-
tive in estimating the strengths observed in Righman’s tests. 

The scarcity of experimental data and the improved reli-
ability in the inelastic LTB region using the proposed equa-
tions highlights the need to consider a larger database of 
tests for acceptable reliability computations. Subramanian 
and White (2017b, 2017c) propose the modified LTB equa-
tions based on FE test simulations that encompass a wide 
variety of cross sections, while simultaneously ensuring a fit 
to the available experimental data.

CONCLUSIONS

This paper presents a comprehensive analysis of the cor-
relation between nominal strength predictions, obtained 
based on practical LTB calculations using inelastic stiffness 
reduction factors (SRFs), with a large suite of experimen-
tal data compiled from research worldwide. Both current 
design resistance equations as well as modified equations 
recommended by Subramanian and White (2017b, 2017c) 
are considered. The following are the key conclusions from 
this study:

1. The equations proposed herein and in Subramanian 
and White (2017a, 2017b, 2017c, 2017d) are shown 
to provide a more uniform reliability index compared 
with the unified provisions, based on the available 
experimental test data. The proposed equations also 
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It is recommended that in routine design practice, when 
K = 1 is assumed in the LTB strength calculations, the pro-
posed Lp value may be divided by an implicit K value of 
0.8, thus providing some liberalization of the more restric-
tive Lp equation recommended when end restraint effects are 
addressed directly within the design calculations.

Additional experimental data and inelastic buckling pre-
dictions involving transverse loading on members with no 
intermediate brace points, including load height effects, are 
discussed by Toğay et al. (2016).

SYMBOLS

Afc Area of compression flange

Awc Area of web in compression

Cb Moment modification factor

D Dead load

Dc Depth of web in compression measured from the 
inside of the compression flange

E Modulus of elasticity

Fy Yield strength of steel

Fyc Yield strength of compression flange

Fyr Compression flange stress at nominal onset 
of yielding including the effects of residual 
stresses, taken as 0.7Fy for homogeneous doubly 
symmetric I-sections in the AISC Specification 
and AASHTO, denoted by FL in the AISC 
Specification.

K Effective length factor for lateral-torsional 
buckling

Kelastic Elastic effective length factor for lateral-torsional 
buckling

Kinelastic Inelastic effective length factor for lateral-
torsional buckling

L Live load

Lb Unbraced length of beam or girder

Lp Limiting effective unbraced length below 
which the strength under uniform bending is 
characterized by the plateau resistance

Lr Limiting effective unbraced length above 
which the strength under uniform bending is 
characterized by the theoretical elastic lateral-
torsional buckling resistance

Mmax Maximum possible flexural resistance obtained 
for short member unbraced lengths, equal to Mp 
for compact section members and equal to RpgMyc 
(AISC) = RbMyc (AASHTO) for homogeneous 
slender-web members

Mn Unified Moment calculated using the unified provisions

MnPr Moment calculated using the proposed changes 
to the AISC Specification, AASHTO, and unified 
LTB resistance equations

Mp Plastic moment

Mtest Maximum moment obtained from experimental 
tests as reported by authors

My Nominal yield moment

Myc Yield moment corresponding to the compression 
flange

Myt Yield moment corresponding to the tension 
flange

N Number of experimental tests considered in the 
statistical analysis

Q Load effects on member

Q Mean of load effects

R Resistance of cross-section

R Mean of resistance effects

Rb Web bend-buckling factor, which accounts 
for the typical decrease in the LTB plateau 
strength of slender-web sections due to load 
shedding to the compression flange caused by 
web bend-buckling, denoted by Rpg in the AISC 
Specification.

Rh Hybrid factor, which accounts for early web 
yielding when the member has a lower yield 
strength web as compared to the tension and/or 
compression flange

Rpc Web plastification or cross-section effective 
shape factor for the compression flange, which 
accounts for the typical increase in the LTB 
plateau strength above Myc for noncompact and 
compact web sections

Rpt Web plastification or cross-section effective shape 
factor for the tension flange, which accounts for 
an increase in the tension flange yield strength 
over Myt

V Coefficient of variation

VQ Coefficient of variation of load effects
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