
M A N Y YEARS AGO, highway bridges were located by de

termining the most convenient crossing site, with little 
regard to the general alignment of the roadway. After 
the bridge location was established, the highway designer 
or surveyor laid out the highway to meet the bridge. 

During the last several decades, this situation has 
reversed and now bridges must fit the highway align
ment that has been predetermined by many other con
siderations. The increasingly frequent occurrence of 
structures on curved alignment is presenting real chal
lenges to engineers, especially in the design of urban 
freeways where multi-level interchanges must be built 
within tight geometric restrictions. 

The present-day emphasis on good appearance is 
also an important factor. Welding has helped to produce 
structures with smooth surfaces, interrupted by a mini
m u m amount of detail. Outside transverse stiffeners are 
no longer used on many highway girders. The use of 
curved supporting beams or girders in a structure on 
curved alignment is a natural outgrowth of this trend 
toward aesthetic design. 

Along with aesthetic considerations, curved girders 
offer certain technical advantages where structures 
must be built to fit curved highway alignment, when 
compared with girders composed of straight segments. 
The roadway slab design and construction become 
much simpler because the stringer spacing and parapet 
overhang from the exterior stringer are constant over 
the entire length of structure. This provides for equally 
spaced slab reinforcement, a more uniform stress dis
tribution, and panel forms which can be re-used as 
pouring of the deck slab progresses. 

In addition, curved girders permit the designer to 
make use of continuous construction and its inherent 
advantages in situations which might otherwise be limited 
to simple spans. Continuous spans make more efficient 
use of materials and permit the elimination of many 
undesirable expansion details. A stiffer structure is ob
tained and in some cases more vertical clearance is avail
able due to the use of shallower girders. 
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Curved girders also permit the designer increased 
flexibility, where possible locations of substructures are 
often limited because of required clearances. The use 
of straight girders to span the same distance could mean 
a complicated framing system to support the deck. When 
high substructures are involved, the use of longer spans 
may also result in savings. 

The major advantages of curved girders are structural 
efficiency, appearance and simplicity in certain phases 
of design, detailing, and construction. 

TYPES OF CURVED FRAMING 

For convenience, curved girder framing may be 
categorized into two types: "closed framing" and "open 
framing." 

In the closed framing type, curved girders are 
tied together by diaphragms or floorbeams and hor
izontal lateral bracing at the girder flange levels (see 
Fig. 1). Torsion is resisted by individual curved girders 

Fig. 1. Curved girders tied together with diaphragms and lateral 
bracing 
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Fig. 2. Curved girders tied together with diaphragms 

and interaction of these girders through diaphragms 
or floorbeams and lateral bracing. 

In the open framing type, curved girders are tied 
together by diaphragms or floorbeams only, with no 
horizontal lateral bracing (see Fig. 2). In this case, 
torsion must be resisted by individual curved girders 
and interaction of curved girders through diaphragms 
or floorbeams. 

A combination of closed and open framing can be 
used to form a third type of curved girder framing. For 
example, in Fig. 3 the exterior girders of a four-girder 
curved bridge are tied to the adjacent interior girders 
by diaphragms and horizontal lateral bracing, while 
the interior girders are tied to each other by diaphragms 
only. 

"EXACT" METHOD OF ANALYSIS 

Curved girders may be of the plate-girder type or 
of the box-girder type. Although the analysis procedure 
discussed in this paper is specifically directed to the 
analysis of the plate-girder type, much of the procedure 
is also applicable to the analysis of box girders—except 

Fig. 3. Curved girders tied together with diaphragms and lateral 
bracing in alternate bays 
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for the consideration of the torsional stiffness. The 
analysis procedure presented assumes that the plate 
girder has torsional stiffness due to warping only; stiff
ness due to pure (or St. Venant) torsion is neglected. 
For box girders, the contribution of St. Venant torsion 
should not be neglected. 

To gain a feel for what is involved in analyzing a 
curved girder bridge, consider a two-girder open fram
ing system (Fig. 4). This bridge is continuous over one 
intermediate support and the ends are simply supported. 
The complete structure is assumed to have eleven dia
phragms, including the end diaphragms. 

To formulate the problem by the stiffness method, 
the number of unknowns is equal to the number of in
dependent displacements (degrees of freedom) possible 
(see Fig. 5). In general, assuming that certain basic 
conditions of symmetry of individual members, etc., 
are satisfied, three displacements are possible at each 
joint (point of intersecting members or external re
straint). These displacements consist of one vertical 
translation and two rotations about axes in the "hori
zontal" plane of the structure. 

However, certain joints are normally restrained 
against displacing in specified directions. These " re
straints" can be subtracted from the total number of po
tential joint displacements. Thus, 

n = 3/ — r 

Fig. 4. Two-girder two-span bridge 

n = number of displacements 
j = number of joints 
r = number of restraints 

n = 3j - r 
n = 3(22) - 6 = 60 

Fig. 5. Stiffness formulation—two-girder two-span bridge 
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where 

n = number of independent displacements 
j = number of joints 
r — number of restraints 

For this case, there are 22 joints and vertical displace
ment is restrained at each point of support (6 restraints); 
thus, 

n = 3(22) - 6 = 60 

From this general discussion, it is concluded that 60 
simultaneous equations are necessary to solve this 
problem by the stiffness method. This does not imply 
that the structure is statically indeterminate to the 
60th degree. 

A flexibility solution for this problem would be 
formulated with the member forces expressed as un
knowns. See Fig. 6. For each member, six member 
forces are possible (three at each end). Also a number 
of external reactive forces may exist; this must be added 
to the number of member forces. From this, the number 
of releases (discontinuities of force) is subtracted. Thus, 

p = 6m + R — s 

where 

p = number of unknown forces 
m = number of members 
R — number of external reactive forces 
s = number of releases 

For this case, there are 31 members, 6 external reac
tions, and zero releases; thus, 

p = 6(31) + 6 - 0 = 192 

Of these 192 unknown forces, only 33 are redundant 
forces (159 statical equations are available). If it 
is assumed that the individual members have no tor
sional stiffness, the number of redundant forces is re
duced from 33 to 22. 

p = number of forces 
m = number of members 
R = number of reactions 
s = number of releases 

p = 6m + R - s 
p = 6(31) + 6 - 0 = 192 

Fig. 6. Flexibility formulation—two-girder two-span bridge 

APPROXIMATE METHOD OF ANALYSIS 

Because of the difficulty of obtaining theoretically 
"exact" solutions, especially if manual methods are 
employed, there is considerable incentive to develop 
a simplified method of analysis. Such a method has 
been developed; following are the steps of the proced
ure for analysis: 

1. Isolate each curved girder under consideration 
and straighten it to its full developed length. The ex
ternal load is then applied to the girder, considering 
it supported at its developed span lengths, and the mo
ment diagram is constructed as for straight girders. This 
diagram is referred to as the primary moment diagram. 

2. Evaluate the moments at the ends of the dia
phragms, from which the end shears are determined. 
These end shears are applied to the girders in their as
sumed straight configuration and additional bending 
moments calculated. 

3. Evaluate the lateral bending moment in the 
girder flanges. This is accomplished by assuming an 
equivalent lateral load applied to the flanges and suit
able support conditions. 

4. Evaluate the stresses resulting from the forces 
calculated in steps 1, 2 and 3. These stresses are super
imposed and checked against the allowable design 
stress. 

5. Review the design, revise portions of it, if neces
sary, and repeat the appropriate steps of the analysis 
procedure. 

Figure 7 shows a portion of a curved girder in plan. 
The arc length is assumed to be d, the spacing between 
diaphragms. A bending moment, M, is shown at each 
end of the girder segment. The bending moment is 
producing tension on the bottom surface. The bending 
moment vectors are resolved into vertical and horizontal 
components. The vertical components are in equilib
r ium; however, the horizontal components are additive. 

Fig. 7. Segment of a curved girder 
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The resultant horizontal component is 

m — 2M sin -
2 

but, because the included angle, 0, is small 

and by definition 

thus 

. e 6 
sin — = — 

2 2 

9 = d/R 

m = M (d/R) 

This is the total torque in the curved girder de
veloped between diaphragms that must be balanced 
(Fig. 8). The only mechanism available to resist this 
torque is the diaphragm. Therefore, the diaphragms 
must be attached to the girders and capable of devel
oping the end moment 

m = M (d/R) 

The existence of these end moments requires that 
the diaphragms also transfer shear between the girders 
(Fig. 9). These shears must be applied to the girders 
and additional bending moments calculated. 

Fig. 8. M/R diagram for a curved girder 

Fig. 9. Segment of a curved bridge showing interaction of forces 
between curved girders and diaphragms 

If the bridge consists of more than two girders, it 
is necessary to make an additional assumption as to how 
the shear is distributed between the girders. It is as
sumed that the total shear transferred to each girder 
is proportional to the distance of the girder from the 
centerline of the bridge (Fig. 10). With this assump
tion, it is possible to calculate the end moments in the 
diaphragms and the shears to be applied to the girders 
(Fig. 11). For a four-girder structure the shear load 
to be applied to the exterior girder (Fig. 12) is 

XM 
V 

(10/9)(RD/d) 

Fig. 10. Cross-section of a four-girder bridge and assumed distribu
tion of diaphragm shears to girders 
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Fig. 11. Cross-section of a four-girder bridge—shear equilibrium 

Fig. 12. Cross-section of a four-girder bridge—moment equilibrium 
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Figures 13 through 16 illustrate the percent increase 
in primary bending moment due to the shear loads for 
three, four, five and eight-girder bridges, respectively. 
These data are for simple spans or for lengths between 
inflection points of continuous girders. For a three-
girder system consider a radius of 1,000 ft and a span 
of 100 ft; a percent increase of 18 is noted (Fig. 13). 
For a four-girder system and the same criteria, the 
percent increase is approximately 14 (Fig. 14). The 
percent increase is approximately 12 for a five-girder 
system (Fig. 15) and approximately 6 for an eight-
girder system (Fig. 16). Note that the increase in bend
ing moment due to the shear loads decreases as the num
ber of girders increase. This percent increase is for the 
outside girder. Because the structure is in static equilib
rium, there must be corresponding decreases in some 
of the girders to offset the increases in the other girders. 

After the primary bending moment and the addi
tional bendine moment due to the shear loads are cal

culated, the analyst must check the lateral bending 
moment in the top and bottom flanges. This is evaluated 
by loading the flanges with a transverse load of 

_ M 

q " Rh 

and assuming support at the diaphragm locations (see 
Fig. 17). An average negative moment of 

Mr. 
1 

10 
qd2 1 Md2 

W~Rh 

is considered for design purposes. The stress caused by this 
lateral bending moment is 

where 

h = 
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ML 
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Fig. 13. Percent increase in primary bending moment due to shear 
loads—three girder system 
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Fig. 75. Percent increase in primary bending moment due to shear 
loads—-Jive girder system 
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Fig. 14. Percent increase in primary bending moment due to shear 
loads—four girder system 

Fig. 76. Percent increase in primary bending moment due to shear 
loads—eight girder system 
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Fig. 17. Girder flange with transverse load 

Note that the lateral bending stress is inversely pro
portional to the section modulus of the flange and that 
the section modulus is proportional to the flange thick
ness and to the flange width squared; thus, the wider 
the flange, the lower the stress. However, consideration 
must be given to other factors such as fabrication and 
erection, to arrive at the most desirable flange dimensions. 

Note also that the lateral bending stress is directly 
dependent on the lateral bending moment which is 
related to the diaphragm spacing to the second power. 
Thus, if this component of stress becomes objectionably 
large, it can be lowered by reducing the diaphragm 
spacing. One must weigh the benefits to be gained from 
more closely spaced diaphragms against an expected 
increase in fabrication cost. 

The solution to the equations 

MTj = — 
1 M d2 
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Fig. 18. Lateral bending moment and bending stress for a diaphragm 
spacing of 25 ft 
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f2 = ML/SL 

is shown in Fig. 18 for a diaphragm spacing of 25 ft. 
Consider a M/R of 10 kip-ft/ft, a girder depth of 4 
ft, and a flange plate 30 x l | - in . A lateral bending 
moment of 156 kip-ft and a flange stress of 10 ksi are 
read from the plots. 

Fi gure 19 shows similar relationships for a diaphragm 
spacing of 15 ft. Considering the same conditions as in 
the preceding paragraph, a lateral bending moment 
of 56 kip-ft and a stress of 3.6 ksi are observed. 

The final stress in the girder is the resultant of the 
stresses obtained from steps 1 and 2 and the lateral 
bending stress obtained in step 3. The stresses obtained 
in steps 1 and 2 vary linearly through the depth of the 
girder as in the design of straight girders (Fig. 20). 
However, the stress obtained in step 3 varies across the 
flanges with a neutral axis coincident with the girder 
web, assuming that the girder is symmetrical about a 
vertical axis (Fig. 21). This stress due to lateral bend-

Fig. 19. Lateral moment and bending stress for a diaphragm 
spacing of 15 ft 

«r^i 

Fig. 20. Distribution of stress due to bending moments obtained in 
steps 1 and 2 
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Fig. 21. Distribution of stress due to lateral bending moments ob
tained in step 3 

ing does not alter the average stress in the flanges but 
it does affect the distribution of stress—increasing it on 
one edge and decreasing it on the opposite edge (Fig. 22). 

The final state of stress on the girder cross section 
indicates that the section does not remain plane, but 
is warped. It is, in fact, warped; however each stress 
calculation is concerned with a section or portion of 
a section that remains plane under that state of stress. 
Therefore, the elementary stress formulas are applicable. 

Fig. 22. Final distribution of stress in the girder 

As in any other design situation, if the final stresses 
are not satisfactory, it is necessary to revise the design 
and repeat the appropriate phases of the analysis. 
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