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ABSTRACT

The stiffness probe method (SPM) is a new numerical procedure that calculates buckling loads. SPM probes the local stiffness of a given 
structure at the point of application of a small transverse perturbation force as the applied load is increased. The local stiffness degrades from 
a maximum for an unloaded structure to zero at the buckling load. An artifice spring is added to the original structure that eventually absorbs 
the full perturbation force at a prescribed small deflection, thereby keeping structural deformations small as the buckling load is approached. 
As a result, using an indicator that approaches zero at buckling rather than having to rely on increasingly larger deflections at buckling as in 
conventional P-Δ methods, SPM ensures an accurate numerical result for the critical load. We use SPM herein to study the behavior of one 
and two cross-arm cable-stayed columns under applied load. A formula is given to calculate the minimum slenderness that justifies convert-
ing a tube into a cable-stayed column. Various factors such as cable prestrain, cable cross-sectional areas, and tiers of cross-arms affect-
ing column strength are examined for a series of cable-stayed columns. We find that cable-stayed columns may buckle either in a one-lobe 
symmetrical mode or two-lobe anti-symmetrical mode, the latter case being contrary to conventional thinking. A design example for a given 
cable-stayed column using the AISC Specification is presented. The effect of optimum cable prestrain to enhance column buckling strengths 
is discussed. A strength enhancement ratio (SER) is defined that evaluates the additional column strength gained after transforming a given 
steel tube into a cable-stayed column.

Keywords: analysis, behavior, buckling modes, eigenvectors, cable (slackening, stays, optimum prestraining), columns, design (ASD, LRFD), 
elastic stability, failure mode, numerical methods, residual tension, cross-arms, load (applied, external), spring (augmented, parallel, series), 
steel, stiffness probe, strength (enhancement, nominal).

INTRODUCTION

C able-stayed steel columns consist of a central steel 
tube, to which one or more sets of transverse cross-

arms are welded at equal spacings along the length and to 
which prestressed steel cables are attached as required to 
enhance column strength. Review of the existing literature 
indicates a number of papers that have dealt with the subject 
in various attempts to understand and predict their behavior 
and strength. The following investigators have contributed 
to this field: R.J. Smith et al. (1975), Hafez et al. (1979), 
Hathout et al. (1979), Temple (1977), Temple et al. (1984), 
E.A. Smith (1985), and Saito and Wadee (2009). We pres-
ent a new numerical approach to the subject that examines 
column behavior under axial load and calculates an accurate 
value of strength, followed by design using the 2010 AISC 
Specification for Structural Steel Buildings (AISC, 2010), 
hereafter referred to as the AISC Specification.

For this purpose, we first provide a simple introduction 
to the stiffness probe method (SPM), which was conceived 
jointly by the senior author and the late A.R. Robinson at the 
University of Illinois. R.E. Miller also contributed initially. 
Fundamentally, SPM is based on the incontrovertible fact 
that the stiffness of an axially compressed structure to resist 
the effects of a perturbation force or moment becomes zero 
only when subjected to its buckling load (Bleich et al., 1952; 
Hoff, 1941, 1956). We proceed to explain SPM first in full 
detail and then use the method specifically to calculate the 
buckling load of cable-stayed columns.

We recognize that two sets of internal forces are gener-
ated in any cable-stayed column—namely, compression in 
the central tube and tension in the stay cables. We identify 
these forces and provide equations for columns with one 
and two sets of cross-arms, respectively. We emphasize two 
distinct loading stages, initially at cable prestraining and 
finally at buckling. We also discuss two possible ways of 
specifying cable prestrains for use in the field and provide a 
formula to relate them both.

Cable slackening takes place as the external load increases 
because the applied compression on the tube causes shorten-
ing of both it and the cable stays. Ominous consequences to 
column stability may occur if total cable slackening takes 
place under service conditions. This effect could occur only 
if small amounts of cable prestrain were specified, a situa-
tion that must be prevented. We provide a formula to predict 

195-210_EJQ317_2016-10.indd   195 6/15/17   6:31 PM



196 / ENGINEERING JOURNAL / THIRD QUARTER / 2017

the applied load at which total cable slackening occurs based 
on the initial amount of cable prestrain. For any case where 
the column load for total cable slackening is less than the col-
umn critical load, an enhancement of prestrain is required. 
We avoid this pitfall by specifying enough cable prestrain to 
make the load at which total cable slackening occurs to be 
greater than the column critical load by a reasonable margin.

We now calculate the critical load for a number of cable-
stayed columns. We find that there are cases where the 
governing mode for a cable-stayed column may not be the 
conventional one-lobe symmetrical mode but, rather, the 
two-lobe anti-symmetrical mode. This counterintuitive situ-
ation calls for designers to always calculate and examine 
both modes and then use the smaller of the two as the critical 
value for design. We found that for a given stayed column, 
the critical mode depends on the initial cable pretension. 
There is a value of the latter that gives the same critical load, 
Pcr, for both modes. This value is usually but not always 
the optimum prestrain. Thus, we label as optimum only the 
actual prestrain value that gives the maximum Pcr.

The fact that an antisymmetric two-lobe mode could 
become the governing buckling mode, instead of the con-
ventional symmetric one-lobe mode, was first pointed out 
for a given column using an analytical solution (Blumenthal, 
1937) and later verified numerically (Newmark, 1943). Both 
papers found the buckling load of a double-hinged column 
subjected to two opposing compression loads not at the ends 
but at the column mid-third points instead. The governing 
buckling mode corresponding to the smallest buckling load 
was an anti-symmetrical, two-lobe configuration. Newmark 
remarked at that time that “It is of interest and importance 
that the critical load corresponding to the anti-symmetrical 
deflection is lower than that corresponding to the symmetri-
cal configuration for the arrangement of loads chosen” and 
warned also that “this would not have been discovered if 
only symmetrical defection curves had been assumed.” This 
caveat also applies to the calculation of the critical load 
for a cable-stayed column, a fact that has been verified by 
Smith et al. (1975) as well as by our own calculations using 
SPM. Further work using SPM showed that had the distance 
between the two compressive loads been 0.361L instead of 
L/3, both buckling modes would have provided the same 
critical load at (π/0.361L)2 EI.

For columns provided with cross-arms in a cruciform con-
figuration, there are two principal axes about which buck-
ling of the column may occur. One axis is defined by the 
tube diameter where two opposite cross-arms are located. 
The other axis is at 45° with respect to the cross-arms. We 
studied columns with one and two sets of cross-arms, includ-
ing various areas of steel cables and prestrain levels, before 
concluding that the difference in buckling strength between 
the two axes is insignificant.

Designers shall not use the critical load, Pcr, to verify the 

strength of the supporting tube. Instead, they must use the 
actual compressive force, Ncr, in the tube, which is larger 
than Pcr by the amount of residual tension in the stay cables. 
We provide an example for this calculation using a given 
cable prestrain and find the AISC design strength for the 
given column for both LRFD and ASD values. For the sake 
of comparison, we now use the optimum cable prestrain and 
realize a major enhancement of the column design strength. 
Following this, we introduce the concept of a nominal 
strength enhancement ratio (SER) that effectively evaluates 
the additional strength gained by the unstayed-tube.

STIFFNESS PROBE METHOD

The stiffness probe method (SPM) is a new numerical pro-
cedure that can be used to evaluate the elastic stability of 
structures subjected to compressive forces. It is specifically 
used herein to calculate the buckling load of cable-stayed 
columns.

Consider a column made of a steel tube hinged at both 
ends and subjected to an axial load, P, (see Figure 1). The 
tube is reinforced with four steel cables, or rods, attached to 
each end and to the ends of horizontal cross-arms. The latter 
may be placed at either the mid-height of the column, at the 
mid-third points, or at equal spacing along the tube length as 
needed. Note that the cables are not continuous between the 
top and bottom ends of the tube but are segmental instead 
(see Figure 2). The schematic elevation and plan views of a 
one cross-arm column as shown in Figure 1 provide all nec-
essary structural and geometric information to analyze the 
column for elastic stability. A one cross-arm column is used 
for the sake of simplicity. Both principal axes for flexural 
buckling—namely, a-a and b-b—are shown. Axis a-a is for 
bending about a cruciform configuration of the stay cables, 
and axis b-b is for bending about a two-paired configura-
tion of stay cables. Two possible buckling modes—namely, 
a symmetric (one-lobe) and an anti-symmetric (two-lobe)—
must always be calculated to ascertain the lowest critical 
load, as either mode may govern buckling. Calculations 
of higher modes using SPM is possible as shown herein, 
although modes with three or higher number of lobes will 
not govern column design.

Characteristic to SPM are a perturbation force, PF, and 
an elastic artifice spring of stiffness Kspr. After both are 
attached to a given column, the latter is transformed into 
an augmented structure (Figure 1). For any given value of 
load P, the force PF triggers a transverse displacement δ(P) 
at its location on the column. For any P < Pcr, the column 
achieves an equilibrium configuration. At P = Pcr, the col-
umn buckles while the augmented structure still remains 
stable because of the enhanced stiffness Kspr provided by the 
artifice spring. We note that all of the above would apply as 
well if a perturbation moment PM and an artifice rotational 
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transverse displacement δ(P), the two components PFcol and 
PFspr can be calculated as follows:
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spring of stiffness Krot were used instead of PF and Kspr, 
respectively.

As PF is applied to the augmented structure in the pres-
ence of the external load P, it is resisted by both the col-
umn and the artifice spring Kspr. We recognize these two 
components of PF as PFcol and PFspr, where PF = PFcol +	
PFspr. Because the column and the artifice spring actually 
behave as a set of two parallel springs of stiffness Kcol(P) 
and Kspr, respectively, we find that for any given value of the 

Fig. 1. Cable-stayed column showing applied load P and SPM parameters PF and Kspr.
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Note that Kspr is always constant, while Kcol(P) decreases 
as P increases. At P = 0, the column takes a substantial por-
tion of PF, while the artifice spring takes little. As P con-
tinues to increase, PFcol decreases while PFspr increases. At 
P = Pcr, the column is devoid of any stiffness and cannot 
support any portion of PF, resulting in PFcol = 0 and PFspr = 
PF. Thus, at buckling, the column is subjected exclusively to 
P and not at all to PF. Regardless of the value of PF used to 
trigger the column away from its initial vertical configura-
tion, the resulting Pcr is not affected by PF. This is because 
at P = Pcr, the column is no longer subjected to PF; the latter 
is fully resisted by the elastic spring alone. Similarly, the 
value of Kspr does not affect the resulting value of Pcr. It 
only decides the limiting value of the transverse deflection 
for an equilibrium position of the augmented structure at  
P = Pcr. Therefore, any reasonable set of values for PF and 
Kspr (say, PF = 0.1 kips and Kspr = 0.1 kip/in., or PF = 0.5 
kips and Kspr  = 0.2 kip/in.) should render the same result 
for Pcr. We have verified that the equilibrium configurations 
at Pcr from the preceding two sets of PF and Kspr have the 
same shape, except that the target displacement is 0.1 kip/0.1  
kip/in. = 1 in. for the former, and 0.5 kip/0.2 kip/in. = 2.5 in. 
for the latter set.

The purpose of using an artifice spring is thus clear. To 
wit, Kspr keeps the augmented structure stable even as the 
applied load approaches the column critical load. As a result, 
there is always computational control using SPM, and at the 

location of PF, the transverse deflection is always small and 
limited to the target value. An accurate calculation of Pcr 
is thus possible, with as many significant digits as desired. 
In the absence of an artifice spring, transverse deflections 
at P close to Pcr may increase nonsensically toward infin-
ity, making an accurate calculation of Pcr difficult. We note 
again that at P = Pcr, all of the PF has been absorbed by the 
artifice spring, and none of it is acting on the column. As 
such, SPM differs substantially from the conventional way 
of triggering P-δ effects for which the initial perturbation 
force remains in the column and displacements grow uncon-
trollably as P approaches Pcr.

The artifice spring must be placed so that it acts together 
with the column as two springs in parallel, and not in series 
(Figure  2). For the configuration shown in Figure  2a, the 
column is between the PF and the artifice spring; both the 
column and the artifice spring are subjected to the same dis-
placement, and both share PF according to their respective 
stiffness, Kcol(P) and Kspr. This is an acceptable configura-
tion that we have used for the column shown in Figure 1. 
One could also achieve the same result by placing the PF 
between the column and the artifice spring (Figure  2b). 
What one cannot do is place the artifice spring between the 
column and the PF (Figure 2c). Such a location would make 
the artifice spring and the column act as two springs in 
series, rather than in parallel. As a result, the PF would not 
be shared because both the artifice spring and the column 

 (a) (b) (c)

Fig. 2. Three possible ways for placing the PF and Kspr with respect to the column.
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co-author as part of his doctoral dissertation at the Depart-
ment of Civil Engineering at the University of Illinois at 
Urbana-Champaign (Krishnan, 2015). SPM has been taught 
in class to graduate students by the senior author since 2010.

Numerical Example

We apply SPM to find the buckling modes for the stayed 
column shown in Figure 1 that are within the possible load 
range, 0 ≤ P ≤ Psl. Note that Psl is the applied load that would 
be large enough to cause the stay cables to fully slacken. 
When this happens at T(P) = 0, the cables become ineffec-
tive thereby rendering the column into an unstayed tube. 
Let the steel cables be prestrained to εsspec = 0.002, which 
results in an initial prestrain value εsini = 0.00169 after losses 
caused by compression of the tube. Also, let PF = 0.1 kips 
and Kspr = 0.1 kip/in.

Starting at P = 0, we increase the load, P, gradually for 
the sake of probing the variation of Kcol with P in order to 
ascertain Pcr. The results are given in Figures 3 and 4.

For P = 0:

δ(0) = 0.0289 in.

Kavg (0) = PF/δ(0)
	 	 = 0.100 kip/0.0289 in.
	 	 = 3.46 kip/in.

Kcol(0) = Kavg(0) − Kspr

	 	 = 3.46 kip/in. − 0.100 kip/in.
	 	 = 3.36 kip/in.

Further increasing P results in Pcr = 343 kips at Kcol = 0. At 
this point, we also find:

δ = δmax

	 = PF/Kspr

	 = 0.100 kip/0.100 kip/in.
	 = 1.00 in.

Note that we have chosen not to plot Kaug(P) because it 
is irrelevant for design and also for the sake of clarity. Had 
we done so, the plot of Kaug(P) would have been exactly 
like Kcol(P) except separated above it by a vertical distance 
Kspr = 0.1 kip/in. As such, the value of P that would cause 
buckling of the entire augmented structure would always be 
larger than Pcr and lie to the right of it in Figure 3.

Finding Pcr = 343 kips is all a designer needs, and no fur-
ther work would be necessary, as far as instability is con-
cerned, because this is the load at which the given column 
would fail. Nevertheless, if we look at the column eigenvec-
tor (Figure 4b), we might be surprised to recognize it as a 
two-lobe, anti-symmetric configuration that is convention-
ally associated by designers with the second mode of buck-
ling and not the first. Further loading of the column gives 
the actual second buckling mode as a one-lobe configura-
tion at Pcr2 = 422 kips > Pcr1 = 343 kips (Figures 3 and 4d). 

would take the whole PF, except at different displacements. 
To summarize, never place the artifice spring between the 
PF and the column.

For any given value of the load, P, we define the stiff-
ness of the augmented structure, Kaug(P), as the sum of 
the column stiffness, Kcol(P), and artifice spring stiffness, 
Kspr—that is, Kaug(P) = Kcol(P) + Kspr. We calculate Kaug(P) 
as the ratio PF/δ(P), where δ(P) is the transverse displace-
ment of the column (in the presence of P) as measured at the 
location of PF. We may use any commercial program with 
a P-δ analysis option such as SAP 2000, to calculate δ(P). 
The quantities Kcol(P) and Kaug(P) are functions of P, while 
Kspr is a constant. Once the quantity Kaug(P) is calculated as 
before, we may find Kcol(P) as follows:

 Kcol(P) = Kaug(P) − Kspr (3)

For an unloaded structure—that is, at P = 0—Kaug(0) and 
Kcol(0) are maximum values. As P increases, both Kaug(P) 
and Kcol(P) diminish in value. We probe the stiffness Kcol(P) 
as P increases. Instability ensues at P = Pcr when the stiff-
ness of the column Kcol(Pcr) becomes zero. This leads to 
Kaug(Pcr) − Kspr = 0, or Kaug(Pcr) = Kspr. Note that although 
the column has buckled, the augmented structure remains 
stable at P = Pcr because its remnant stiffness Kaug(Pcr) = 
Kspr is greater than zero. Users of SPM may, alternatively, 
probe the transverse displacement δ(P), instead of Kcol(P), as 
an indicator to check the onset of instability. In which case, 
δ < δmax denotes P < Pcr, while δ = δmax = PF/Kspr is true 
only at P = Pcr. In addition, either the value of PFcol(P) or 
PFspr(P) may also be probed as other possible indicators of 
instability. As such, instability may ensue when PFcol(P) = 
0 or PFspr(P) = PF.

The correctness and accuracy of SPM results have 
been verified using cases with closed-form solutions from 
Timoshenko and Gere (1961), Gurfinkel and Robinson 
(1965), Column Research Committee of Japan (1971), and 
others. SPM may be used to calculate structural instability 
caused not just by static compression loads, as discussed in 
the paper, but also by vibrations at their natural frequencies. 
The concept is the same whether instability ensues by either 
the application of a static load or by structural excitation to 
a natural frequency. They both would cause zero stiffness 
in any given structure. As such, the P-Δ effects caused by 
vibrating masses in reducing the natural frequency of a given 
structure may be readily calculated using SPM. That said, 
SPM is applicable to any problem for which the stiffness 
of a structure will go to zero, thereby leading to instability. 
Some other examples include lean-on columns, polygonal 
frames, arches, and domes. SPM has also been used in prac-
tice by the senior author in 2007 for stability calculations of 
a huge, steel-framed, paper storage structure that collapsed 
in Wisconsin. The method was used to calculate the critical 
load of cable-stayed struts on cable-dome structures by the 
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Fig. 3. Variation of column stiffness Kcol with applied load P, indicating Pcr for the first 
three modes of buckling and Psl at the end of range. Note that the two-lobe buckling mode governs.

This sequence of buckling configurations is definitively 
counterintuitive to conventional thinking. Finally, we find 
a third buckling mode (a three-lobe configuration) at Pcr3 = 
956 kips, which is still less than Psl = 1,048 kips, although 
otherwise irrelevant (Figure 3). A summary of the results is 
shown in Table 1.

We emphasize in both Figures 3 and 4 that stable equilib-
rium for the given column under applied compression load, 
even ideally, would be only possible for P < 343 kips, and 
any applied load larger than that would not be realistic, but 
only a mathematical curiosity. In Figure 4, note that for all 
three buckling modes, the column is only subjected to the 

Table 1. Single Cross-Arm Column as Shown in Figure 1. Summary of SPM Results for the First Three Buckling 
Modes (results in bold characters are for the governing two-lobe buckling mode)

Buckling 
Lobes

Applied 
Load

Tension in 
Cables

Force in 
Tube

Transverse 
Display at 
PF location Stiffness 

Perturbation Force 
Components

Augmented 
Structure Column

Artifice 
Spring Column

No.
P

kips
∑Tcosα

kips
N

kips
δ(P)1

in.
Kaug(P)2

kip/in.
Kcol(P)3

kip/in.
PFspr(P)4

kips
PFcol(P)5

kips

— 0 162 162 0.0289 3.46 3.36 0.0029 0.0971

2 343 109 452 1 0.1 0 0.1 0

1 422 97 519 1 0.1 0 0.1 0

3 956 15 971 1 0.1 0 0.1 0
Notes
1 Maximum value of δ at P = Pcr is δmax = PF/Kspr. For the given case, δmax = 1 in.
2 Kaug(P) = PF/δ(P); where PF = 0.1 kip.
3 Kcol(P) = Kaug(P) − Kspr ; where Kspr = 0.1 kip/in.
4 PFspr(P) = Kspr δ(P).  
5 PFcol(P) = PF − PFspr(P).

195-210_EJQ317_2016-10.indd   200 6/15/17   6:31 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2017 / 201

an obvious impossibility when the PF is located therein. To 
find the two-lobe buckling mode, use the column in Figure 1 
again, except we apply instead a perturbation moment PM =
1 kip-in. and rotational artifice spring Krot = 100 kip-in./rad 
at mid-height, which results in θmax = 1/100 = 0.01 rad, at 
Pcr. Use SPM as before to obtain the two-lobe mode at Pcr = 
343 kips as before. Neither the one-lobe nor the three-lobe 
modes may be captured using this model because they both 
require θ = 0 at column mid-height, which is again an obvi-
ous impossibility when PM is located therein. Comparing 
the results from the two models, we find that the governing 
Pcr = 343 kips corresponds to the two-lobe configuration.

The calculation process for the preceding simplified 
models need not start at P = 0. We may use any reasonable 
value of P1 > 0 for this purpose. If Kcol(P1) were found to be 

corresponding Pcr and not to any transverse force or hori-
zontal reactions at the column supports. This is true because 
using SPM guarantees that, at any P = Pcr, all of the PF is 
absorbed by the artifice spring—that is, PFspr = PF. As such, 
no part of PF remains on the structure—that is, PFcol = 0.

Simplified SPM Models for Calculating Pcr

Let us try the following two simple models to ascertain 
which buckling mode governs. To find the one-lobe buck-
ling mode, use the column in Figure 1 with the same per-
turbation set PF  = 0.1 kips and Kspr  = 0.1 kip/in., except 
located now at mid-height. Using SPM, again we obtain 
Pcr = 422 kips, at δmax = 1 in. as before. Note that the two-
lobe mode would not be captured by this model because it 
requires zero displacement at column mid-height, which is 

Fig. 4. Column eigenvectors at various loading stages, including a tabulated 
list of variables; cable stays and cross-arms are not shown for clarity.
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positive, this would mean P1 < Pcr. We then try P2 > P1 and 
calculate Kcol(P2). A negative value for Kcol(P2) would mean 
P2 > Pcr. Linear interpolation between Kcol(P1) and Kcol(P2) 
should provide an educated guess for the next trial P = P3. 
The process should converge quickly to a value of Kcol(Pi) as 
close to zero as possible or to a value small enough to satisfy 
the designer’s criterion for accuracy.

INTERNAL FORCES GENERATED  
IN CABLE-STAYED COLUMNS

Cable-stayed columns are usually hinged at both ends and 
braced there against lateral displacements. Actual bracing 
may take place either by direct attachment or through dia-
phragm action of the floor or roof against shear walls or 
X-braced frames available elsewhere in the structure. For 
design purposes, we emphasize two distinct stages of load-
ing: at initial cable stressing and at ultimate cable stressing. 
Vertical equilibrium calls for the following equation:

 N = P + ∑T(P)cosα (4)

to be true at all times, where ∑T(P) is the sum of the ten-
sion of all four individual cables at any given load P and 
α is the angle between each cable and the axis of the tube. 
We also consider the small variation of the angle α between 
the initial stage and any given value of P that is caused by 
column shortening. Although practically this variation is 
negligible, we have accounted for it by automatically updat-
ing the angle α as the load increases. We recognize that 
N(P) > P at all times. The difference N(P) − P is largest at 
cable prestressing (P = 0), and smallest at buckling (P = Pcr) 
when the cables are subjected to a residual tension, Tres > 0. 
Only for the unacceptable case when cables slacken totally 
as P increases (usually because of small initial prestress-
ing) would ∑T = 0 and N(P) = P. The quantity Tres depends 
mostly on the amount of initial cable prestressing To, which 
is gradually reduced as the column shortens by a strain Δε, 
while inclined cables shorten simultaneously, except by a 
smaller strain equal to Δεcos2α.

Consider now a stayed column with two tiers of cross-
arms. Force equilibrium at the two end segments of this col-
umn is also given by Equation 4. For the central segment, 
the same equation holds true, except for α = 0. Our previous 
discussion on the difference between forces N and P is appli-
cable here as well. However, we note that the change in strain 
imposed on the central segment by a change in applied load, 
is identical to that in the corresponding steel cables. This is 
because being parallel to each other makes the cables and 
the central segment of the tube of the same length. Also for 
α = 0, Δεcos2α = Δε, which results in the tube internal force 
N being always somewhat larger in the central rather than in 
the end segments. Regardless of the number of tiers of cross-
arms, it is the maximum force in the tube N(Pcr), and not the 
applied Pcr, that governs the design of the tube.

PRESTRAINING THE STAYED CABLES

The amount of cable prestraining influences the behavior of 
a stayed column under axial load. For any given cable-stayed 
column, the amount of initial straining that is imposed on 
the stays determines the axial strength of the column. Con-
sider the stayed column shown in Figure 1. We may specify 
the amount of cable prestrain by requiring that either the 
cables be stretched by a certain amount (as measured by 
cable elongation or recovery) or, at the end of the stretch-
ing operation, they be prestrained to a given level (as mea-
sured by a strain gauge or transverse vibration device). Let 
us specify a prestrain εsspec = 0.002 for the inclined cable seg-
ment measuring 468 in. We calculate the cable elongation at 
0.002(468 in.) = 0.936 in. but recognize that, at the end of the 
cable-stretching operation, the actual prestrain in the cable 
would be less than 0.002 because of tube shortening from 
cable-induced compression. We may calculate the prestrain 
in the cable using the following approximate formula:
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(5)

where 

εsini =  actual initial strain in the stays at P = 0
εsspec =  specified prestrain
∑As = total area of the cables, in.2

A  = area of the tube, in.2

Es and E =  respective moduli of elasticity of the cable-
stays and the tube, ksi

α  =  initial value of the angle between the cables 
and the axis of the tube

Substituting εsspec = 0.002 and the values of other variables 
shown in Figure 1 into Equation 5, we obtain εsini = 0.001693 
< 0.002, as expected. Compare this value to εsini = 0.001695 
obtained using SAP 2000 or an equivalent program, which 
accounts not just for the shortening of the column as in 
Equation 5, but also for the resulting small increase in angle 
α, which Equation 5 would not do. The two results are prac-
tically identical.

The second option considers the specified prestrain as 
that required in the cable at the end of the prestretching 
operation—say, εsini = 0.002. This is the strain to be read in a 
strain gauge attached to the stay when we stop stretching the 
cable. Using Equation 5, we calculate an equivalent εsspec = 
0.002363 and a corresponding cable elongation of 1.105 in. 
As expected, both values for the second option are larger 
than those corresponding to the first option. For computa-
tional purposes, we recommend εsspec, while for implementa-
tion in the field, the anticipated value of εsini would be easier 
to verify for consistency. Whichever option is used must be 
clearly specified by the designer for proper implementation 
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specified cable prestrain to a value large enough to guaran-
tee compliance.

Note that for the case of a column with two cross-arms, 
where cable slackening may first occur at the central seg-
ment of the tube, use α = 0 in Equations 6 and 7.

2. Load at Which Steel Tube Yields

We now consider the possibility that the steel tube for the 
column in Figure 1 may yield under a force, Ny, caused by a 
load Py < Pcr. If such were the case, total slackening of the 
stay cables might occur abruptly following inelastic defor-
mations in the steel tube. Failure would result from the col-
umn reverting to an unstayed-tube condition.

Hand calculation of Py is possible using the following lin-
earized relation between Py and Psl:

 Py = Psl(Ny − No)/(Nsl − No) (8)

which assumes that the cable inclination angle α remains 
constant. Substituting data already available to us in Equa-
tion 8, such as No = 162 kips from Table 1, Psl = Nsl = 1,048 
kips, and Ny = 758 kips from Figure 3, we obtain Py = 706 
kips. This value is also indicated by a thick vertical line 
in Figure  3. Because Py > Pcr  = 343 kips, the latter value 
remains the governing critical load.

DECIDING COLUMN CRITICAL AXIS

The core of cable-stayed columns is conventionally made 
of a steel tube, although we note that a solid wood core has 
been used in Germany (Keil, 2000). Whether hollow or 
solid, the core is axisymmetric and may buckle about any 
transverse plane that contains its axis. However, once four 
stay cables are attached in cruciform fashion to the core, 
two distinct transverse planes are created about which the 
column may buckle. These we have labeled a-a (case A) and 
b-b (case B) in Figure 1. Plane a-a passes through the center 
of the core and two of the stays. Plane b-b makes a 45° angle 
with plane a-a, and does not contain any of the cable stays. 
Both planes create corresponding axes of bending about the 
column cross-section.

We calculate Pcr for both such axes of the one cross-arm 
column shown in Figure 1 using SPM. Various cable pre-
strains are considered. The relative difference between any 
pair of results for cases A and B for any given prestrain is 
small and well within 2% of each other. Similar results are 
found for a stayed column with two cross-arms. For prac-
tical design purposes, the buckling strength of a stayed 
column may be considered the same about either of its prin-
cipal axes. These findings stem from our selected numerical 
examples and are not the result of a parametric study.

Tacitly, however, the transverse axis about which the col-
umn section buckles is within the prerogative of the column 
designers, who ultimately decide the position of both pin 

in the field. As far as our study is concerned, we shall show 
both corresponding values in our results. Further, we expect 
that a designer would specify low-relaxation cables. As 
such, any consideration of time-induced prestrain loss in the 
cables can be safely ignored.

LIMIT LOADS

We now discuss the following two limit loads, namely, 
1. Load at which stay cables fully slacken; and 2. Load at 
which the steel tube yields. We calculate these loads to ver-
ify if any of the two might be lower than the column critical 
load.

1. Load at Which Stay Cables Fully Slacken

Design of a cable-stayed column is not adequate unless the 
stays remain taut as the load varies from zero to ultimate. 
We must guarantee that Psl > Pcr is satisfied by a reason-
able margin, where Psl is the load at which full slackening 
may occur and Pcr is the column buckling strength. Let us 
calculate Psl now.

We first recognize that the initial tensile strain in the stay 
cables, εsini, is reduced by the load P. Also, the actual strain 
in the cables, εs(P), is given as the difference between εsini 
and the strain caused by the shortening of the tube under the 
load, P. Using elastic analysis, we find:
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where all terms have been previously identified. Consider 
the column example in Figure 1. Let us calculate if the stay 
cables are still taut for P = Pcr = 343 kips (Figure 3). We have 
already found εsini = 0.001693 after specifying εsspec = 0.002. 
Substituting P = 343 kips and the values of all other vari-
ables in Equation 6, we find εs(P) = 0.001693 − 0.000554 = 
0.00114 > 0. Thus, at P = 343 kips, there is residual tension 
in the cables at Tr = 0.00114 (24,000 ksi)(1 in.2) = 27.36 kip/
cable. As such, full cable slackening will not occur at a load 
smaller than the critical load. To calculate the actual value 
of the load P = Psl at which full slackening occurs, we sub-
stitute εs(Psl) = 0 into Equation 6 and obtain:
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(7)

Using Equation 7 or SAP 2000, we find Psl = 1,048 kips 
after substituting all previous values from Figure 1 for the 
given column. Note this limit load is indicated by a thick 
vertical line in Figure 3. Because Pcr = 343 kips < Psl, the 
stay cables will not fully slacken before failure. For the unac-
ceptable case where Psl < Pcr, the designer must increase the 
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ends and their corresponding axis of rotation. The latter are 
conventionally contained in the same vertical plane, one at 
the top and one at the bottom of the column. As such, col-
umn buckling may take place only in a vertical plane nor-
mal to the axis of rotation of both hinges. Usually, designers 
provide hinges made of opposing vertical steel plates that 
transfer the load through a steel pin placed across them. This 
hinge is not perfect in that it may provide a small rotational 
restraint, mostly generated by friction of the transverse pin 
against its supporting plates. This may cause the actual ulti-
mate load to exceed Pcr by a margin. Thus, calculating Pcr 
as if the column were ideally double hinged is conservative.

The axis of buckling, whether it is case A or B, is deter-
mined by the designer’s selection of the position of the end 
hinges. As a result, only Pcr about the actual axis of buckling 
need be calculated. Buckling about the other axis would call 
for larger values of Pcr because of the resulting rotational 
restraint at the ends. For the same reason, if the two end 
hinges were placed in planes normal, rather than parallel, 
to each other, one could expect higher values of Pcr. In the 
extreme case where fixed ends were provided, using either 
bolted or welded end-plate connections instead of hinges 
will result in even higher values of Pcr. Using fixed-ends to 
enhance Pcr may become more cost-effective for large slen-
derness of the tube. The subject of cable-stayed columns on 
end supports other than hinges is outside the scope of this 
paper.

CRITICAL LOAD

Previously we showed that cable-stayed columns may fail 
by cable total slackening at an axial load that causes stayed-
cable action to cease and the column to revert to a slender 
unstayed tube. However, the most prevalent cause for failure 
of these naturally slender columns is at an applied load equal 
to Pcr. Even after Pcr is calculated, we must design the tube 
to resist the force N(Pcr). This, because Ncr > Pcr due to the 
additional compression imposed by the residual tension in 
the cables (see Equation 4). Once N(Pcr) is calculated, the 
design procedure for a cable-stayed column need not be dif-
ferent from that provided by the AISC Specification (2010) 
for a conventional steel column.

For any given column, Pcr is calculated using SPM to find 
the lowest value, which is given by either the one-lobe sym-
metric or the two-lobe anti-symmetric modes of buckling. 
As shown in Figures 3 and 4, this example confirmed that 
the anti-symmetric mode gives the lowest Pcr and may thus 
prevail as the governing condition. In the following section, 
we check the design validity of the tube selected for Figure 1.

First, however, we study the effects of cable size and 
number of cross-arms on the axial strength of cable-stayed 
columns. We run a series of numerical evaluations for the 
governing buckling load for two types of columns, one with 

a single mid-height cross-arm and the other with two cross-
arms at mid-third points. For either case, we consider four 
cable stays, placed orthogonally to each other, and use three 
specific areas of steel cable, namely, As  = 0.5  in.2, 2As  = 
1.0 in.2 and 4As = 2.0 in.2 per cable. Various levels of cable 
prestrain ranging between zero and 0.004 are used.

The results are shown in two sets of three plots each (see 
Figure 5). All plots show the two respective variations of Pcr 
(but Ncr only for governing Pcr) with cable prestrains εsspec 

and εsini. Specifically shown is the following information: 
(1) column buckling load, Pcr, for the two buckling modes, 
including the governing Pcr shown in bold; (2)  compres-
sion force in the tube, Nc, for the governing mode only; and 
(3)  two indicators of tube compressive strength—namely, 
Euler buckling load of the unstayed tube, NE = (π/L)2 EI = 
98.86 kips as the lower limit, and yield load, Ny  = AFy  = 
758 kips of a robust short tube as the upper limit. Each point 
indicates the results for either the one or two cross-arm col-
umn at a given cable prestrain. It is always true that (1) Ncr > 
Pcr and (2) the quantity Tres = Ncr − Pcr measures the residual 
tension in the stay cables. Theoretically, for a given solu-
tion to be acceptable, Ncr must not exceed the upper limit, 
Ny. However, to account for potential nonlinear behavior and 
uncertainties predicting column strength, we conservatively 
recommend that this limit be taken instead as 0.85Ny. If the 
latter value were exceeded by Ncr, a designer should con-
sider specifying a higher yield strength for the steel.

Engineers interested in drawing the most value from their 
designs may wish to use the optimum cable prestrain for that 
purpose. We define this prestrain as that which generates 
the largest Pcr of the governing set; see the bold variations in 
each plot of Figure 5. For the four plots in Figures 5b and 5c, 
the optimum prestrain is found at the intersection of the Pcr 
(symmetric) and the Pcr (anti-symmetric) buckling modes. 
As such, it is the prestrain at which both modes give the 
same value of Pcr. For the two plots in Figure 5a, the varia-
tions of Pcr do not intersect; the optimum prestrain for both 
plots is given by the largest value of the Pcr (symmetric) vari-
ations. Clearly, for the latter case, the anti-symmetric buck-
ling mode never governs. This makes the resulting stayed 
columns behave as conventional columns if ever loaded to 
buckling. Optimum prestrain points are identified by large 
solid circles in Figure 5.

We recognize both quantities Ny and NE as approximate 
bounds to the corresponding actual values for the lower and 
upper strengths, respectively, of the cable-stayed column. As 
such, it may not be unreasonable to take the vertical distance 
between Ny and NE in Figure 5 as an approximate indicator 
of the maximum amount of strength enhancement caused 
by the transformation of a steel tube into a cable-stayed col-
umn. Justification for this transformation increases with the 
quantity Ny − NE, as in the case of slender columns. From a 
strength point of view, tubes need not be transformed when 
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Fig. 5. Variation of Pcr and Ncr with εsspec and εsini for single and double cross-arm columns with four cables each at 
(a) 0.5 in.2, (b) 1.0 in.2 and (c) 2.0 in.2. Pcr is given for both symmetrical and anti-symmetrical modes. The governing Pcr variation 

is shown in bold. Ncr is only shown for the governing Pcr . Optimum cable prestrain for maximum Pcr is shown by large solid circles.
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the quantity NE ≥ Ny as in the case of robust tubes. On the 
other hand, if Ny > NE were true for a given tube, a simple 
indicator (of the minimum value of slenderness for a double-
hinged tube) that might justify transforming it into a cable-
stayed column would be obtained as follows:

 
( ) = π

min
L/ r E/Fy  

(9)

Note, however, that the additional costs in materials and 
labor that are associated with cable-stayed columns may 
make the preceding limit on slenderness substantially 
smaller than the actual practical value.

For the steel tube used in this study (Figure 1), we sub-
stitute E = 29,000 ksi, Fy = 42 ksi, in Equation 9 and obtain 
(L/r)min = 82.55 and Lmin = 82.55(4.07 in.) = 336 in. Compare 
this to the actual L/r of the tube at 930.71 in./4.07 in. = 229 > 
82.55. This difference may be enough to justify convert-
ing the given steel tube into a cable-stayed column to seek 
additional compressive strength. An alternative solution for 
using instead a larger and heavier conventional steel tube 
may be less attractive.

All six plots in Figure 5 show two distinct variations for 
Pcr as cable prestrain increases. There is first a steep increase 
to a maximum value of Pcr at a certain optimum cable pre-
strain. This is followed by a gradual decline for Pcr as cable 
prestrain increases beyond the optimum. For the initial seg-
ment, we find the quantity Tres = Ncr − Pcr is rather small. It is 
only past the optimum value for Pcr that Tres increases gradu-
ally as cable prestrain increases. We have no structural con-
cern with the latter effect unless it causes the compression 
force in the tube, N, to reach an unacceptable stress level 
under service conditions that would require using a heavier 
tube. There is no good reason to seek a larger prestrain for 
the stay cables than that necessary to obtain the optimum 
value for Pcr (Figure 5).

At the low end of cable prestrains, total slackening may 
result from the loss of cable tension as the applied axial 
load increases, thereby negating cable-stayed action for the 
column. Thus, all six plots in Figure 5 indicate an AVOID 
range for prestrain that leads to total cable slackening under 
the applied load. Designers should heed this advice by mak-
ing sure that enough prestraining is specified to prevent pre-
mature failure.

We now examine Figure 5 again to compare the strength 
of stayed-columns with either one or two cross-arms for the 
same given cable areas and prestrain. All columns with one 
cross-arm provide a smaller buckling strength, case by case, 
than corresponding columns equipped with two cross-arms. 
We conclude that cable-stayed columns with two cross-arms 
are more efficient than those with one cross-arm because 
they require a smaller amount of cable area to achieve the 
same strength. Whether they are also more cost efficient 
would require a comparison accounting for the cost of addi-
tional cross-arms, connections and labor.

DESIGN AXIAL LOAD

Calculation of the critical load of a stayed column, Pcr, is fol-
lowed by determination of its nominal compressive strength, 
Pn = FcrAg, where Fcr is the nominal critical stress and Ag is 
the gross area of the tube. We use the provisions of AISC 
Specification Chapter E, Section E3 (AISC, 2010) to calcu-
late Pn for the one cross-arm stayed-column shown in Fig-
ure 1. Our previous calculations using SPM (see Figure 3 and 
Table 1) indicate that the two-lobe rather than the one-lobe 
buckling configuration governs the strength of the column. 
We obtain Pcr = 343 kips from Table 1. This corresponds to 
a compression force in the tube, Ncr = 452 kips, for which the 
compressive stress, given by Ncr/A = 452 kips/18.06 in.2 = 25 
ksi. This is well within the elastic range for steel specified 
at 42 ksi yield strength and our recommended 0.85(42 ksi) = 
37.5 ksi maximum compressive stress. There is also a resid-
ual vertical tension force in the stay cables, ∑Tcosα = 109 
kips. These results verify Ncr  = Pcr  + ∑Tcosα. We recog-
nize that it is the force in the tube, Ncr, and not the applied 
load, Pcr, that controls the nominal compressive strength 
of the stayed column. As such, the value of AISC’s design 
strength, Fcr, depends exclusively on the tube.

We may find the equivalent slenderness ratio of the cable-
stayed tube, kL/r, using:
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Because AISC’s control quantity λ = 4.71 =E/Fy 	
4.71 = 123.8 > 107/42 ksi29,000 ksi , we calculate Fcr 
using AISC Specification Equation E3-2:
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( )=
=

F 0.877 5.46 ksi

4.79 ksi
cr

Using this value of Fcr, Pn,tube is calculated as:

( )( )=

= <<

P 18.06 in. 4.79 ksi

86.5 kips 252 kips

n tube,
2

The nominal strength enhancement of the cable-stayed 
column over that of the tube alone is measured by the dif-
ference of the corresponding nominal strengths, which is 
substantial:

− = −P P 252 kips 86.5 kips

= 165.5kips
n n tube,

The nominal strength enhancement ratio (SER) may be 
defined as the ratio (Pn − Pn,tube)/Pn,tube. For the given col-
umn, we find SER = 165.5 kips/86.5 kips = 1.91. In other 
words, the relative nominal strength of the cable-stayed tube 
will be 2.91 times as large as that of the unstayed-tube.

At this point, a designer may question whether higher col-
umn strength could have been attained had a cable prestrain 
other than εsspec = 0.002 been chosen. It behooves the designer 
to do so as our previous work clearly indicates (see Figure 5, 
plot 1b). Thus, had the optimum prestrain at εsspec = 0.000888 
been found first and selected for use, this new design would 
have provided No = 71.4 kips at P = 0, Pcr = 446 kips and 
Ncr = 449 kips from SPM. Now using the AISC Specifica-
tion obtain Fe = 24.9 ksi, Fcr = 20.7 ksi, Nn = 374 kips, and 
finally, Pn = 357 kips. The latter value exceeds that of the 
previous design, Pn = 253 kips, by a substantial margin. This 
is due to the much smaller cable residual tension 39.2 kips at 
optimum prestrain εsspec = 0.000888 versus 139 kips at εsspec = 
0.002. Even when a designer would likely not know the opti-
mum cable prestrain at the outset, evaluating a few values of 
cable prestrain may help enhance Pn as desired.

SUMMARY AND CONCLUSIONS

1. Adding cross-arms and cables to a slender steel 
tube transforms it into a cable-stayed column with a 
substantially larger axial compressive strength. A simple 
approximate formula is given that evaluates the minimum 
tube slenderness for which this transformation may be 
justified. Because the formula is based only on strength 
considerations, and does not account for additional costs 
involved in the transformation, the result should be 
considered a low estimate.

2. A cable-stayed column with two cross-arms at the mid-
third points of its height may resist a larger applied 
compression load for the same size cables and prestraining 
than an identical column with only one set of cross-arms 
at mid-height.

and then,
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With this value of Fcr, the nominal compressive strength of 
the tube is:
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Let us now calculate the value of Pn on the column that 
would correspond to the preceding value of Nn. Hand cal-
culation is possible using the following linearized relation 
between Pn and Nn, which is similar to Equation 8, except 
adapted to AISC design notations:

 Pn = Pcr(Nn − No)/ (Ncr − No) (10)

Equation  10 also assumes that the cable inclination angle 
α remains constant. Using Table 1, we find No = 162 kips, 
Ncr = 452 kips, and Pcr = 343 kips. Substituting these values 
and the preceding Nn = 375 kips into Equation 10, we find 
Pn = 252 kips. This value is slightly larger than the more 
accurate value 251.6 kips provided by computer analysis that 
accounts for the slight increase in the angle α due to tube 
shortening under load.

Designers using LRFD or ASD may now take the design 
compressive strength at ϕPn = 0.90(252 kips) = 226 kips or 
the allowable compressive strength at Pn/Ω = 252 kips/1.67 = 
151 kips, respectively. Let us compare Pn = 252 kips for the 
given cable-stayed column to that of the tube alone. We find 
kL/r = 1.0(931 in.)/(4.07 in.) = 229 > 200. While this exceeds 
the recommended limit of 200 for non-stayed columns as 
mentioned in AISC Specification Section E2 (AISC, 2010), 
it is viewed as acceptable for the purpose of strength com-
parison. We now calculate Pn:

Pn = AFcr 

Because λ = 123.8 < kL/r = 229, use AISC Specification 
Equation E3-3:

 Fcr = 0.877Fe (Spec. Eq. E3-3)
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and then,
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3. The amount of cable prestraining is important. Too 
little prestrain must be avoided to prevent total cable 
slackening and premature column failure under applied 
load. Too much prestrain may cause overstressing of the 
steel tube and a subsequent reduction in column strength. 
An optimum value for cable prestraining that provides the 
highest column strength for a given set of cables can be 
calculated.

4. Once the stay cables are pretensioned, they impose an 
initial compression force on the tube. The applied load 
increases the tube compression force but reduces the cable 
initial tension. The axial compression force in the tube 
is always larger than the applied load by the amount of 
residual tension in the cables. It is the axial force in the 
tube, and not the applied load causing column buckling, 
that must be used to verify the nominal strength of the 
cable-stayed column.

5. Premature failure caused by total cable slackening due 
to low prestraining can and must be avoided. Failure of 
cable-stayed tubed caused by buckling under increasing 
axial load may occur in both the symmetric (one-lobe) 
and anti-symmetric (two-lobe) modes. The critical load 
for both modes must be calculated to ascertain which 
one governs. Although counterintuitive to conventional 
column design, it is a fact that the anti-symmetric mode 
may govern design.

6. Buckling calculations for cable-stayed columns are 
easily accomplished using the stiffness probe method 
(SPM), which is presented here for the first time. SPM 
is conceptually based on the fact that the local structural 
stiffness at the point of application of a perturbation 
force (or moment) in the presence of an artifice spring 
(translational for a perturbation force and rotational for 
a perturbation moment) degrades from a maximum 
for the unloaded column to zero at the buckling load. 
This measurement of the stiffness under controlled 
deformations as the structure approaches instability allows 
for a very accurate calculation of the buckling load. SPM 
has been successfully used in various structures to predict 
elastic instability generated not just by compression loads 
as shown herein, but also by masses forced to vibrate at 
their natural frequencies.
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SYMBOLS

A  Cross-sectional area of core (tube), in.2

Aca Cross-sectional area of cross-arm, in.2

Ag Gross cross-sectional area of core (tube), in.2

As Cross-sectional area of each stay cable, in.2

E  Modulus of elasticity of core (tube), ksi

Eca Modulus of elasticity of cross-arm, ksi

Es Modulus of elasticity of cable, ksi

Fcr Critical compressive stress used to calculate nominal 
strength, ksi

Fe  Critical elastic buckling stress of core (tube), ksi

Fu  Specified minimum tensile strength of the type of 
steel used, ksi

Fy Specified minimum yield stress of the type of steel 
used, ksi

I Moment of inertia of core (tube), in.4

Kaug Stiffness of augmented column, kip/in.

Kcol Column stiffness, kip/in.

Krot Rotational spring stiffness, kip-in./rad.

Kspr Translational spring stiffness, kip/in.

L Length of core (tube), in.

N Compression force in tube due to applied load, kips

Ncr Compression force in tube at buckling, kips

NE Euler buckling force for core (tube) alone, kips

Nn Nominal design force for core (tube), kips

No Axial force in core (tube) at P = 0, kips

Ny Yield force for core (tube) cross-section, kips

P Applied axial load at column ends, kips

PF Perturbation force, kips

PM Perturbation moment, kip-in.

Pcr1 Governing critical buckling load for cable-stayed 
column, kips

Pcr2,  Buckling loads for unattainable modes 2 and 3, 
Pcr3  respectively, kips

Pn Nominal compressive strength, kips

Pn, tube Nominal compressive strength of unstayed-tube, kips

Psl Axial load causing cables to fully slacken (T = 0), 
kips
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Hoff, N.J. (1941), “Stable and Unstable Equilibrium of Plane 
Frameworks,” Journal of the Aeronautical Sciences, 
Vol. 8, No. 3, pp. 115–119.

Hoff, N.J. (1956), The Analysis of Structures, Based on the 
Minimal Principles and the Principle of Virtual Dis-
placements, Wiley, New York, NY.

Keil A. (2000), “Mont-Cenis Academy in Herne, Germany,” 
Structural Engineering International, Vol.  10, No.  3, 
pp. 172–174.

Krishnan S. (2015), Prestressed Cable Domes: Structural 
Behavior and Design, Doctoral Dissertation, Department 
of Civil Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL.

Newmark, N.M. (1943), “Numerical Procedure for Comput-
ing Deflections, Moments and Buckling Loads,” Transac-
tions ASCE, Vol. 108, pp. 1,161–1,234.

Saito D. and Wadee M.A. (2009), “Buckling Behavior of 
Prestressed Steel Stayed Columns with Imperfections 
and Stress Limitation,” Engineering Structures, Vol. 31, 
No. 1, pp. 1–15.

Smith E.A. (1985), “Behavior of Columns with Preten-
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Pu Ultimate strength of cable-stayed column, kips

SER Strength enhancement ratio

T(P) Tension force in stay cable at a given load P, kips

To Initial tension in stay cables, kips

Tres Residual tension in stay cables, kips

bca Horizontal length of cross-arm between cable 
attachments, in.

k Effective length factor for compression members

kL/r Equivalent slenderness ratio of cable-stayed core 
(tube)

r Radius of gyration of the tube, in.

Ω Safety factor

α Angle between the core (tube) and stay cables, deg. 
or rad.

δ Transverse displacement of the artifice translational 
spring, in.

εs Strain in cable

εsini Initial strain in cable

εsspec Specified strain in cable

λ Control quantity used for steel column design

θ Nodal rotation of the artifice rotational spring, rad.

ϕ Strength reduction factor
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