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INTRODUCTION

L ateral bracing for columns and beams sufficient to per-
mit them to attain the buckling strength of the member 

as if braced by immovable supports is called stability brac-
ing. The stability bracing requirements found in Appendix 
6 of the AISC Specification for Structural Steel Buildings 
(AISC, 2010a) have remained essentially unchanged since 
they were first introduced in the 1999 LRFD Specification 
for Structural Steel Buildings (AISC, 2000). George Winter 
(1958) appears to have been the first to recognize that sta-
bility bracing must not only develop sufficient strength but 
must also have sufficient stiffness to provide the necessary 
stability bracing of columns and beams. This stability brac-
ing is equivalent in effectiveness to an immovable support 
and in this paper is also referred to as bracing.

Although the Specification requirements appear to be 
fairly straightforward, practicing engineers often ask about 
the difference between “nodal” and “relative” bracing. This 
paper will first look at the background of the provisions and 
then suggest how best to distinguish between these “nodal” 
and “relative” braces. It will also show that the approach 
taken by the Specification is safe and permits simple rules to 
be applied to a wide range of bracing problems.

Figure 1 shows four ways to provide lateral bracing for 
a column; three are identified as nodal bracing and one as 
relative bracing. Case (a) shows braces that are immovable 
supports. The column is divided into two segments with 
length Lb. Thus, the Euler buckling load (flexural buckling) 
for this column is Pe = π2EI/Lb

2. The column of case  (b) 
is braced at the midpoint with a spring. Thus, if the given 
spring has sufficient stiffness and strength, this column will 
also buckle at the load Pe as for case (a). Case (c) column is 
similar to case (b) except that the immovable support at the 
top has been replaced by a spring. If these springs have suf-
ficient stiffness and strength, this column will also buckle at 
the same load as in case (a). The last column to consider is 
that given as case (d). This structure shows a column that is 
braced by a series of diagonal braces, interconnected in such 
a way that the column on the right is sufficiently braced to 
permit it to buckle at the same load as the column of case (a).

COLUMNS WITH NODAL BRACES

Column Case (b)

Timoshenko (1936) used the basic theory of elastic stability 
to determine the ideal bracing stiffness for the column given 
as case  (b) and similar columns with numerous equally 
spaced braces. Winter (1958) recognized that it would not 
be necessary to determine the exact stiffness and strength 
requirement if a practical and simple method could be 
developed that would also account for initial imperfections 
of the column. The column shown in Figure  2 is the col-
umn addressed initially by Winter. The column is shown in 
its perfectly straight position as a solid line. The assumed 
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imperfect column is shown as a dashed line with an initial 
displacement at the point of the spring, δo. As a compressive 
load is applied to the column, it will deform as shown by the 
second dashed line with an additional displacement, δ. The 
corresponding force in the spring is F = βδ, where β is the 
spring stiffness at the brace point. If the spring stiffness is 
sufficient to permit buckling as defined in case (a), the stiff-
ness will be defined as βreq. The column will snap through 
to the two half-wave modes shown as a thin solid line in Fig-
ure 2, and the load will be equal to the Euler buckling load, 
Pe = π2EI/Lb

2. In this buckled shape, considering small dis-
placements, placing a hinge at the point of the spring causes 
little loss of accuracy because the moment at this point may 
be taken as zero. Taking moments about this hinge for either 
half of the column gives
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which leads to 
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For the perfect or ideal column, δo = 0, and the ideal stiff-
ness can be defined as

 
βideal e

b

P

L
= 2

 
(3)

The ideal stiffness given in Equation 3 is the minimum 
brace stiffness needed for the column to attain the Euler 
buckling load if the column were perfectly straight. For 
real braces, this brace stiffness will include the influence 
of all components that make up the brace between the col-
umn being braced and the immovable support. This would 

include connections and any other structure the brace might 
be connected to.

It will be shown later that providing the ideal stiffness 
leads to a very large spring force at buckling. However, given 
that a real column is not ideal, the required brace stiffness 
can be determined by combining Equations 2 and 3, thus
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(4)

and the brace force is given by 

 F req ideal o= = +( )β δ β δ δ  
(5)

Winter (1958) proceeds to determine the ideal stiffness 
for columns similar to Figure 1b with two, three and four 
equally spaced springs while having an immovable sup-
port at the top of the column. These values are identical to 
those presented by Timoshenko (1936) and are given here in 
Table 1, where

	 βideal = η0Pe/Lb (6)

A value of n = 1, which leads to η0 = 2.0, corresponds to the 
condition that led to Equation 3 as shown in Figure 2. The 
subscript of η refers to the lateral degree of freedom at the 
top of the column.

More recently, Zhang, Beliveau and Huston (1993) pub-
lished a single equation that provides the ideal stiffness for 
any number of springs. Their equation is
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The coefficient λ in Equation 7 provides identical values to 
those given by Timoshenko (1936).

Lb

Lb

P

case (a)

P

case (b)
Nodal

P

case (c)

P

Lb

Lb

case (d)
Relative

Fig. 1. Lateral bracing for column stability.
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Column Case (c)

The column of case (c) behaves differently than the column 
of case (b) because, in addition to the intermediate braced 
points, the top of this column is permitted to displace lat-
erally. This column was treated by Timoshenko and Gere 
(1961) for the case of only one spring, which was located at 
the top of the column as shown in Figure 3. Taking Winter’s 
(1958) equilibrium approach and using the same definitions 
as previously, the moment about the column base is

 M L Preq b e o= − +( ) =β δ δ δ 0 (8)

which gives the required stiffness as 
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For the ideal column with δo = 0, the ideal stiffness is 
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(10)

Although Timoshenko and Gere (1961) do not provide 
results for more than one spring in the arrangement of case 

(c), Zhang et al. (1993) provide an equation for the ideal 
spring stiffness for any number of springs as
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(11)

The ideal stiffness given by Equation 11 is the minimum 
stiffness if the column were ideal. Note that multiplier η1 
(Table 2) starts at 1.0 for a single spring and increases to 4.0 
for an infinite number of springs. The multiplier η0 (Table 1) 
starts at 2.0 for a single spring and also increases to 4.0 for 
an infinite number of springs.

As was the situation with the column of case (b), a real 
column is not ideal, and the brace stiffness can be deter-
mined by combining Equations 9 and 10, thus

 
β β δ

δreq ideal
o= +⎛
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(12)

and the brace force is given by

 F req ideal o= = +( )β δ β δ δ  (13)

Equation 12 is identical to Equation 4. Thus, regardless of 

Table 1. Coefficient, η0, for Determination of Ideal Spring Stiffness, Case (b) 
n = number of springs (Timoshenko, 1936)

n 1 2 3 4 5 6 10 infinite

η0 2.00 3.00 3.41 3.62 3.73 3.80 3.92 4.00

Pe

Lb

Lb

P

F =

F/2 = /2

F/2 = /2

o

Pe

Fig. 2. Column buckling (Winter, 1958).

Table 2. Coefficient, η1, for Determination of Ideal Spring Stiffness, Case (c),  
n = number of springs (Zhang et al., 1993)

n 1 2 3 4 5 6 10 infinite

η1 1.00 2.62 3.25 3.53 3.68 3.77 3.91 4.00

Lb

P

F =

o

T

Fig. 3. Brace at top of column (Timoshenko and Gere, 1961).
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which spring arrangement is used, the relationship between 
the required stiffness and the ideal stiffness is the same and 
is a function of the relationship between the initial displace-
ment and the final displacement at buckling.

To investigate the relationship between spring stiffness 
and column buckling strength, the column of Figure 3 will 
again be used. Taking moments about the pin at the base of 
the column gives

 P LT b T oδ β δ δ= −( ) (14)

Using the ideal stiffness from Equation 10 and rearranging 
yields
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(15)

From Equation 15 it can be seen that, for a brace with ideal 
stiffness, δT/δo must approach infinity in order for the col-
umn buckling load to approach Pe. This is illustrated in Fig-
ure 4 for the column with a spring of ideal stiffness through 
the curve labeled βideal. With the deflection approaching 
infinity, the brace force will also approach infinity. This, of 
course, is an untenable solution. However, if the spring stiff-
ness is taken as 1.5βideal, it can be shown that the column will 
attain the buckling load with a displacement of δ δT o = 3. 
If the spring stiffness is 2βideal, the column will attain the 
buckling load when δ δT o = 2, and when the spring stiff-
ness is 3βideal, the column will attain the buckling load when	
δ δT o = 1 5. . These curves are illustrated in Figure 4.

For a column to attain P = Pe, Equation 15 leads to a brace 
(spring) stiffness of

 
β

δ δ

δ δ
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Combining Equations 10 and 16, the brace force, F =  
β(δT − δo), simplifies to
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Both Equations 16 and 17 are plotted in Figure 5 as a 
function of δ δT o = 0. The figure shows that for δ δT o = 2, 
the combination of required brace stiffness and brace force 
is optimal for design.

The case of δ δT o = 2 means that the displacement at 
buckling will be equal to the initial deflection. Thus, δ = δo, 
for which Equation 12 is simplified to

 β β βreq ideal ideal= +( ) =1 1 2  (18)

Equations 5 and 13, which give the required brace force, 
are also identical for the two arrangements of bracing. Thus, 
regardless of arrangement of nodal braces, the required 
brace force is a function of the ideal stiffness and the dis-
placement at the brace point. To determine the brace force, it 
is not sufficient to establish the relationship between the ini-
tial imperfection and the final deflection; actual numerical 
values must be established. With the column length defined 
as in these cases, the permitted out-of-plumbness tolerance 
is usually taken as 0.002Lb, based on the AISC Code of 
Standard Practice (AISC, 2010b). For the assumption of δ	= 
δo, the brace force is

 

F

L L L

ideal o

ideal b b b ideal

= +( )
= +( ) =
β δ δ

ββ β0 002 0 002 0 004. . .  

(19)

0

1

0 2 4 6 8 10
T / o

= o

P/Pe

= ideal

= 2 ideal

= 1.5 ideal

= 3 ideal

Fig. 4. Influence of brace stiffness, β, on column buckling load, P.
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This coincides with the value obtained using Equation 17, 
with δ δT o = 2 and δo bL = 0 002. .

Specification Provisions for Nodal Braces

The required brace stiffness and force for column nodal 
braces are given in Appendix 6.2.2 of the Specification. 
Winter (1958) noted that “the small magnitudes of both 
rigidity and strength of bracing which are sufficient to pro-
vide extremely large effects…suggest that it is not necessary 
to compute these two characteristics with great accuracy.” 
The largest required brace stiffness occurs as the number of 
braces approaches infinity for the columns of cases (b) and 
(c). In both cases, the coefficient, η0 or η1, is equal to 4.0. 
Thus, the Specification adopted this condition as a simple 
and conservative requirement and from Equation 18, with 
βideal = 4Pe /	Lb,

 
β β βreq ideal ideal

e

b

P

L
= +( ) = =1 1 2

8

 
(20)

In the elastic buckling region of column behavior, the nomi-
nal strength is given by Specification Equation E3-3. In 
terms of force this can be written as

 P Pn e= 0 877.  (21)

Because the designer will be starting with the column 
required strength, Pr , it will be useful to establish a rela-
tionship between Pr and Pe. If the required strength of the 
column is exactly equal to the available strength, then

 P P P Pr n e e= = ( ) =ϕ 0 9 0 877 0 789. . .  (22)

Solving Equation 22 for Pe and defining a resistance factor 

for design of bracing stiffness, ϕ = 0.789, yields

 
P

P P
e

r r= =
0 789. ϕ  

(23)

Substituting Equation 23 into Equation 20 gives

 
β

φ
req

r

b

P

L
= 8

 
(24)

Conservatively defining ϕ = 0.75 yields Specification 
Equation A-6-4 for LRFD. A similar substitution with Ω 
will give the ASD equation. The same requirements apply to 
columns controlled by inelastic buckling. The Specification 
Commentary provides a way to reduce the required stiff-
ness to account for the actual number of intermediate braces 
but does not distinguish between the columns of Figures 1b 
and 1c.

Although the Specification establishes the required brace 
stiffness based on an infinite number of equally spaced 
braces, the required brace force is based on the two-story 
column shown in Figure 2. Using Equation 19 and substitut-
ing the ideal stiffness for a single spring at mid-height, from 
Table 1, which is η0 = 2.0, yields

 
F L L

P

L
Pb ideal b

e

b
e= = ⎛

⎝
⎜

⎞
⎠
⎟ =0 004 0 004

2
0 008. . .β

 
(25)

Because the column will only be called upon to provide the 
required strength, Pr , this required strength will be directly 
substituted in place of Pe. Design for brace strength will uti-
lize the safety and resistance factors associated with design 
of the specific bracing members.

Winter (1958) assumed that the shape of the initial 

Fig. 5. Required brace stiffness, β, and brace force, F, for column load P = Pe.
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imperfections followed the same sine wave as the buckled 
column. Plaut (1993) showed that Equation 25, based on 
Winter’s approach, can be unconservative for assumed dis-
placements with shapes other than that assumed by Winter. 
To account for this, Specification Equation A-6-3 for the 
required brace force uses the multiplier of 0.01 rather than 
0.008: 

 P Prb r= 0 01.  (26)

COLUMNS WITH RELATIVE BRACES

Column Case (d)

The approach to development of the requirements for relative 
braces usually starts with the structure shown in Figure 6. 
A review of that structure shows that the diagonal bracing 
member connects the top of the column to an immovable 
support. Thus, this structure can be modeled like the struc-
ture in Figure 3. The only difference is that the stiffness and 
force requirements relate to the horizontal direction, and 
they must be converted for design to the longitudinal direc-
tion of the brace. Accepting that Figure 3 is a simplification 
of the structure in Figure 6, the required stiffness for the 
structure of Figure 6 is derived from equilibrium:

 
β δ

δreq
e

b

oP

L
= +⎛

⎝⎜
⎞
⎠⎟

1
 

(27)

which is identical to Equation 9. For the perfect or ideal col-
umn, δo = 0 and the ideal stiffness is 

 
β ρ
ideal

e

b

P

L
= 1

 
(28)

where ρ1 = 1.0. The required brace force is then given by

 F ideal o= +( )β δ δ  (29)

The extension of the one-story structure of Figure 6 to 
a multistory structure similar to that in Figure 1d is rarely 
presented in the literature. It is that extension that causes 
difficulty in understanding exactly what a relative brace is 
because, clearly, the two cases just discussed could both be 
called nodal braces.

Zhang et al. (1993) presented a study of column brac-
ing stiffness that addressed both nodal and relative braces 
through an energy analysis. They first showed that for a 
single-degree-of-freedom system, as shown here in Figures 
3 and 6, the ideal stiffness is as given in Equation 28. They 
then proceed to address multi-degree-of-freedom systems 
and found, again through an energy analysis, that for sys-
tems similar to that shown in Figure 1d, ρ1 is always 1.0. 
In addition to the multi-degree-of-freedom system shown 
in Figure 1d, they also studied a system similar to that in 
Figure 1d but with an immovable support at the top of the 
structure. They found that the coefficient for this case, taken 
here as ρ0, was also always 1.0, regardless of the number of 
brace points. Thus, the ideal stiffness (case with δ0 = 0) for 
all these relative bracing systems is given as

 
β ρ
ideal

e

b

P

L
=

 
(30)

with ρ = ρ0 = ρ1 = 1.0.
The condensed stiffness matrix for the multistory nodal 

brace system in Figure 1c (with identical braces at each 
story) is the constant brace stiffness times the identity 
matrix. Thus, there is no interaction between the displace-
ment at one brace point and the displacement at any other 
brace point. The stiffness matrix for the relative brace sys-
tem shown in Figure 1d is the constant brace stiffness times 
a diagonal matrix with a bandwidth of 3. Thus, there is inter-
action between adjacent braced points. It is this interaction 
that separates a relative brace system from a nodal brace 
system.

Specification Provisions for Relative Braces

Using Equations 27, 28 and 29, the equations for relative 
braces found in the Specification can be developed. If the 
final deflection is again taken equal to the initial imperfec-
tion, as was done for nodal braces, δ = δo and from Equation 
27 the required brace stiffness is 

 
β βreq

e

b
ideal

P

L
= =2

2
 

(31)

Substituting for Pe, as was done earlier for nodal braces, 
yields the required brace stiffness as given by Specification 
Equation A-6-2:

o

T

P

Lb

Fig. 6. Relative column brace.
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β

φ
req

r

b

P

L
= 2

 
(32)

As with the derivation of Equation 25 for nodal braces, if a 
tolerable value of displacement at buckling, δ, is assumed 
equal to the initial out-of-plumbness, δ = δo = 0.002Lb , and 
Pe is replaced by Pr , the required brace force becomes

 P Prb ideal o r= +( ) =β δ δ 0 004.  (33)

which is Specification Equation A-6-1.

NUMERICAL EXAMPLES

A three-story column will be used to confirm that the ideal 
spring stiffness results in the column buckling at the Euler 
buckling load. Figure 7 shows four possibilities for bracing 
of the column, similar to the four columns shown in Fig-
ure 1. For the column, I = 18.3 in.4 (Iy for a W8×24) and Lb = 
10.0 ft, SAP2000 (CSI, 2011) is used to determine the buck-
ling load for each column considering only flexural defor-
mations of the column.

Case (a): Immovable Supports

The Euler buckling load for this column with a length of 
10.0 ft is

 

P
EI

L
e = =

( )⎡⎣ ⎤⎦
=π π2

2

2

2

29 000 18 3

10 12
363 7

( , )( . )
.  kips

 

With immovable supports, the buckling load for the 

three-story column, as determined by SAP2000, is Pcritical = 
363.8 kips.

Case (b): Two Intermediate Spring Supports, n = 2,  
η0 = 3.00

Again, with the Euler buckling load at 363.7 kips, the ideal 
stiffness is

 
β η
ideal

e

b

e

b

P

L

P

L
= = = ( ) =0 3 00 3 00 363 7

10 12
9 09

. . ( . )
.  kips/in.

 

The minimum spring stiffness for these two intermediate 
springs resulting in a buckling load of 363.7 kips, as deter-
mined by SAP2000, is β = 9.09 kips/in.

Case (c): Two Intermediate Spring Supports Plus Top 
Spring Support, n = 3, η1 = 3.25

Again, with the Euler buckling load at 363.7 kips, the ideal 
stiffness is

 
β η
ideal

e

b

e

b

P

L

P

L
= = = ( ) =1 3 25 3 25 363 7

10 12
9 85

. . ( . )
.  kips/in.

 

The minimum spring stiffness for these three springs result-
ing in a buckling load of 363.7 kips, as determined by 
SAP2000, is β = 9.84 kips/in.

Case (d): Three-Story Column with Truss Type 
Bracing, ρ = 1.0

For this structure, the horizontal and vertical members are 
assumed axially rigid. Thus, the bracing stiffness will all be 

case (d)
Relative

P

case (a)

10 ft

10 ft

10 ft

P

case (b)
Nodal

P

case (c)

P

10 ft

10 ft

10 ft

10 ft

Fig. 7. Structures for lateral bracing for column stability examples.
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contributed by the diagonal braces. Again, with the Euler 
buckling load at 363.7 kips, the ideal stiffness is

 
β ρ
ideal

e

b

e

b

P

L

P

L
= = = ( ) =1 00 1 00 363 7

10 12
3 03

. . ( . )
.  kips/in.

 

The minimum spring stiffness for the three diagonals 
resulting in a buckling load of 363.7 kips, as determined by 
SAP2000, is β = 3.03 kips/in., which corresponds to a brace 
area of 0.0355 in.2

RECOMMENDED REVISIONS TO APPENDIX 6 
REQUIREMENTS FOR COLUMN BRACES

Based on the development presented here, there appear to be 
two inconsistencies in the Specification requirements. The 
first has to do with determination of the required brace force 
for nodal braces and the second the brace force for relative 
braces. 

The required brace stiffness given in Equation 24 (Equa-
tion A-6-4) is based on the assumption of an infinite num-
ber of nodal braces, η0 = 4.0, while the required brace force 
given in Equation 25 is based on a single intermediate nodal 
brace, η0 = 2.0. It would seem to be a more reasonable 
assumption to base both the required stiffness and strength 
on the same structure. Because the assumption of an infinite 
number of braces is conservative for all cases, use of that 
same assumption for required brace force would mean that 
Equation 25 should be 

 
F L L
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L
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e

b
e= = ⎛

⎝
⎜

⎞
⎠
⎟ =0 004 0 004

4
0 016. . .β

 
(34)

Using the increase for a variation in the shape of the ini-
tial imperfections based on the work of Plaut (1993) and how 
that work was used to get from Equation 25 to Equation 26 
(Equation A-6-3), the required brace force should be 

 P Prb r= 0 02.  (35)

It is interesting to note that this recommended requirement 
is the same as what had been used historically (before 1999); 
brace force equals 2% of the force in the column. 

The Specification Commentary provides an approach to 
reduce the required brace stiffness to account for the actual 
number of braces. However, because the required brace force 
is already based on the presence of a single brace, there can 
be no reduction of the brace force to account for the actual 
number of braces.

Although no studies have been found to illustrate the 
impact of the variation in shape of the initial imperfections 
on the relative bracing system, it would seem logical that 
there is an influence and that it would be similar to that on a 

nodal brace system. That being the case, Equation 33 (Equa-
tion A-6-1) should be 

 P Prb r= 0 005.  (36)

WHICH IS IT, NODAL OR RELATIVE?

The Specification makes the distinction between nodal and 
relative braces in order to provide simplified equations for 
design of braces. Using the definitions of nodal and relative 
braces found in the Specification Commentary, the brace of 
Figure 3 is a nodal brace, and the brace of Figure 6 is a 
relative brace. Yet, as was shown here, for the case of this 
one-story structure, the brace points are identical in how 
they behave and, thus, have the same theoretical strength 
and stiffness requirements. For a nodal bracing system, all 
braces are nodal. For a relative bracing system, all diagonal 
braces are relative braces, while all other members are axi-
ally rigid. There are many other ways to provide bracing for 
columns. However, based on the derivations illustrated here, 
the Specification requirements do not directly apply to those 
situations.

As the number of brace points increases, the ideal stiff-
ness coefficient for nodal braces approaches 4, while the 
ideal stiffness coefficient for relative braces remains at 
1. This difference is also reflected in the required brace 
strength. Thus, it is desirable to distinguish between the 
two types of bracing systems. A nodal brace connects a 
column to an immovable support. The condensed stiffness 
matrix for a multistory nodal brace system (Figures 1a, 1b 
and 1c) with identical braces at each story is the constant 
brace stiffness times the identity matrix. Thus, there is no 
interaction between the displacement at one brace point 
and the displacement at any other brace point. A relative 
brace system, however, braces a column in such a way that 
there is interaction between the displacements at each end 
of the column unbraced length. In this system (Figure 1d), 
the stiffness matrix is the constant brace stiffness times a 
diagonal matrix with a bandwidth of 3, showing the interac-
tion between adjacent brace points. It is this interaction that 
defines a relative brace system and distinguishes it from a 
nodal brace system. 

Another way to identify the type of bracing is by exam-
ining the braced member and assuming that it is hinged at 
the brace points. These hinges lead to a structural mech-
anism when any single brace point is considered laterally 
unsupported. If the mechanism accommodates a deflected 
shape involving the displacement of more than one brace 
point, then the bracing is relative. When investigating pos-
sible mechanisms, only diagonal braces or spring supports 
may be removed. This is consistent with the assumption that 
these members are the only source of axial deformations.

This can be illustrated by considering the column of 
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Figure  7d as if it were hinged at each brace point. The 
removal of the bottom diagonal brace triggers a mechanism 
where all three brace points above the base displace later-
ally as a rigid body. This is an indication that the bottom 
diagonal provides relative bracing. If the diagonal brace at 
the second level is removed, a mechanism is formed where 
the two brace points above this brace are displaced laterally. 
Thus, this too is a relative brace. If this same approach is 
applied to any of the examples of nodal braces, it will be 
seen that the only brace point to displace is the point actually 
braced, thus confirming it is a nodal brace.

Once the required force at the brace points is determined, 
it is generally sufficient to consider that this force acts non-
concurrently at each of the brace points. This is consistent 
with the assumption that the braced member acts as if it 
were hinged at brace points and that instability occurs with 
buckling of a single segment between hinges.

To simplify design, the Specification provisions for a 
nodal brace use the worst-case stiffness requirement of an 
infinite number of braces. This means that when using the 
requirements of Specification Appendix 6, the required 
stiffness of a nodal brace is 4 times that of a relative brace 
(comparing Equations 20 and 31) and, using the approach 
detailed here, the required strength of the nodal brace is 2.5 
times that of a relative brace (comparing Equations 26 and 
33). Because the option is available in the Specification, it is 
desirable to design braces like those of Figures 1d and 6 as 
relative braces. However, for any column bracing system, if 
there is a question as to how to classify the brace, a nodal 
bracing solution will generally be conservative. Because the 
required stiffness and strength are usually small in magni-
tude, this extra conservatism is not likely to be a burden on 
the design. 

The recommended revisions presented in the previous 
section make both the stiffness and strength requirements 
of nodal braces equal to four times that of relative braces.

Beams with Lateral Braces

Two types of lateral braces are defined for beams, nodal 
braces and relative braces as shown in Figure 8. The Speci-
fication provisions are derived from the same models previ-
ously discussed for columns. However, there are a number 
of factors that affect the requirements for beam braces that 
were not a part of the discussion for columns. These include 
the conversion of the beam moment to an equivalent axial 
force, the presence of load applied to the top flange of the 
beam and the possibility of double curvature bending. The 
Specification Commentary shows how these factors are 
incorporated as Equation C-A-6-5, based on the presenta-
tion by Yura (2001):

 
β

ϕbr
i t b f d

b

N C C P C

L
=

( )2

 
(37)

In this equation, the 2 represents the relationship between 
the required and ideal brace stiffness as shown for col-
umns by Equations 18 and 31; Ni is equivalent to η0 given 
in Table 1 for nodal braces of columns and is given in the 
Specification Commentary by the approximate equation, 
Ni = (4 − 2/n); Ct accounts for top flange loading and is taken 
as 1.0 when the beam is loaded at its centroid and 1 + (1.2/n) 
otherwise; and Cd accounts for reverse curvature bending. 
The term CbPf uses the flexural moment gradient factor, Cb, 
Specification Equation F1-1, to increase the possible flange 
force, P EI Lf yc b= π2 2, due to a moment diagram less severe 
than uniform moment, where Iyc = tf  b

3
f /12, the out-of-plane 

moment of inertia of the compression flange.
For the Specification requirements, the term CbPf in 

Equation 37 is replaced by an equivalent flange force, Mr/ho, 
where Mr is the maximum required flexural strength of the 
beam as if it were under a uniform moment and ho is the dis-
tance between beam flange centroids. For nodal braces, Ni 
varies from 2 to 4 based on the number of braces. The upper 
limit of 4 was selected for columns. However, for beams, Ct 
also varies with the number of braces. Therefore it is helpful 
to look at the range of the product of these terms. Table 3 
shows the multipliers η0, Ni, Ct and NiCt. 

Recognizing that the range of the product NiCt is from 
4.00 to 4.80 and remembering Winter’s original goal was to 
find a simple yet conservative approach, for the Specifica-
tion requirement this product is conservatively taken as 5. 

Lb

Lb

Lb

Lb

Nodal Relative

A

BB

A

Fig. 8. Plan view of beam AB with  
compression flange lateral brace.
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With these two substitutions, Equation 37 for nodal beam 
braces becomes Specification Equation A-6-8:
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(38)

For a column relative brace, it was shown in Equation 30 
that βideal = ρPe/Lb and ρ = 1.0. Thus, for a relative beam 
brace, Ni will be taken as 1.0. From Table 3 it is seen that 
the maximum value of Ct is 2.2 for a single brace with top 
flange loading. For simplicity, Ct is taken as 2.0 for relative 
bracing according to Yura (2001), so Equation 37 becomes, 
for a relative beam brace, Specification Equation A-6-6:
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(39)

A similar approach can be followed to obtain the Specifica-
tion equations for ASD.

The brace force requirements are the same as they were 
for columns, with the addition of the influence of location 
of load on the cross section and reverse curvature bending, 
if applicable. From Equations 38 and 39, recognizing that 
βbr = 2βideal and using δ = δo = 0.002Lb as was done for 
columns, the required nodal brace force is obtained using 
F = βideal (δo +	δ), which gives Specification Equation A-6-7:

 P M C hrb r d o= 0 02. /  (40)

For a relative brace, Specification Equation A-6-5 is

 P M C hrb r d o= 0 008. /  (41)

In each of these required stiffness and strength equations, 
according to the Specification, Cd = 2 for the brace closest to 
the inflection point and Cd = 1 for all other braces on a beam 
in double curvature and for all braces of a beam in single 
curvature. As was the case for column bracing design, the 
resistance and safety factors, ϕ and Ω, will be applied in the 
brace strength design. 

The distinction between nodal braces and relative braces 
for beams is the same as it was for columns. If there is an 

interaction between braced points, then the braces can be 
treated as relative braces. However, treating all cases of 
bracing as nodal will always be conservative and, as was 
the case for columns, will not be a burdensome requirement. 

It is important to note that for beams loaded at their cen-
troid, Ct = 1 and the stiffness and strength requirements of 
nodal beam braces would be equal to four times that of rela-
tive beam braces.

CONCLUSIONS

The intent of the lateral stability bracing requirements of 
Specification Appendix 6 is to provide a simple yet con-
servative approach for sizing braces. This paper has shown 
how these requirements were developed, has described 
the distinction between nodal and relative braces, and has 
pointed out two apparent inconsistencies. Recommendations 
have been offered for changes in two of the Specification 
equations. It was recommended that Specification Equation 
A-6-3 be changed to

 P Prb r= 0 02.  (35)

and Specification Equation A-6-1 be changed to

 P Prb r= 0 005.  (36)

One additional requirement should be discussed. If the 
bracing is included in a second-order analysis that incorpo-
rates the initial out-of-straightness of the member, the results 
of that analysis may be used in lieu of the lateral stability 
bracing requirements of Specification Appendix 6. Because 
Specification Chapter C requires that a second-order analy-
sis, including initial out-of-straightness, be carried out for 
the lateral-load-resisting system and because column brac-
ing will be included in that analysis, application of the 
requirements of Specification Appendix 6 for column brac-
ing can often be avoided. 

Because beam bracing is normally not included in a 
second-order analysis, the beam bracing provisions usually 
cannot be avoided. In addition to the lateral bracing require-
ments for beams discussed in this paper, Specification 
Appendix 6 includes provisions for torsional bracing.

Table 3. Coefficients for Nodal Beam Braces 
n = number of springs (Yura, 2001)

n 1 2 3 4 5 6 10 infinite

η0 2.00 3.00 3.41 3.62 3.73 3.80 3.92 4.00

Ni 2.00 3.00 3.33 3.50 3.60 3.67 3.80 4.00

Ct 2.20 1.60 1.40 1.30 1.24 1.20 1.12 1.00

NiCt 4.40 4.80 4.67 4.55 4.46 4.40 4.26 4.00
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SYMBOLS

Cb Lateral-torsional buckling modification factor for 
nonuniform moment diagrams

Cd Coefficient accounting for increased required 
bracing stiffness at inflection point

Ct Coefficient to account for load location relative to 
centroidal axis

E Modulus of elasticity of steel

F Force in brace or spring representing brace

I Moment of inertia for axis about which buckling is 
considered

Lb Unbraced length for flexural buckling

M Moment of forces about a point

Mr Required moment strength

Ni Coefficient to account for number of nodal braces or 
presence of relative braces

P Axial force on a column

Pe Column elastic buckling strength known as the Euler 
buckling strength

Pf Beam compressive flange force

Pn Nominal compressive strength

Pr Required compressive strength

Prb Required brace strength

n Number of springs or braces

β	 Spring or brace stiffness

βbr Brace stiffness

βideal Ideal brace stiffness

βreq Required brace stiffness

δ Additional deflection at buckling

δo Initial displacement due to imperfection

δT Total deflection at buckling

η0 Coefficient for determination of ideal spring stiffness 
with only intermediate nodal braces

η1 Coefficient for determination of ideal spring stiffness 
with intermediate and column end nodal braces

λ Coefficient for determination of ideal spring stiffness 
based on Zhang et al. (1993)

ρ	 Coefficient for determination of ideal spring stiffness 
for relative braces

ρ0 Coefficient for determination of ideal spring stiffness 
with only intermediate relative braces

ρ1 Coefficient for determination of ideal spring stiffness 
with intermediate and column end relative braces

ϕ	 Resistance factor
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