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INTRODUCTION

When a horizontally curved beam is lifted by two cables, 
it tends to roll (rotate) about an axis above the beam. If 

the lift points are not approximately one-fifth of the beam’s 
length from the near end, the beam may roll significantly. 
This causes weak-axis bending and cross-sectional twist to 
occur. Excessive roll and twist may cause difficulties when 
the beam is put into place, e.g., on permanent or temporary 
bridge supports. The objectives of the present study are to 
obtain analytical solutions for a basic class of beams and 
to determine the effects of various parameters, such as the 
locations of the lift points. For suspended beams that are 
intentionally curved, or are meant to be straight but have an 
imperfection in shape, the displacements and stresses are of 
concern, but lateral buckling is typically not an issue (Petru-
zzi, 2010; Plaut and Moen, 2011).

In the analysis, the beams are circularly curved (hori-
zontally), the curvature is small, and the cross-sectional 
dimensions are small compared to the radius of curvature. 
The cross-section is uniform and doubly symmetric, and its 
center of gravity coincides with its shear center. The ana-
lytical formulation is also accurate for singly symmetric sec-
tions when the center of twist (shear center) is close to the 
cross-section centroid (Cojocaru, 2012). The cross-section 

is rigid and does not change shape as the beam rolls and 
deforms. The material behavior is linearly elastic and the 
displacements are small. The beam is subjected to its self-
weight and to the two supporting cable forces that are sym-
metric with respect to midspan.

Investigations on the lifting of straight or curved beams 
include Mast (1989), Dux and Kitipornchai (1990), and 
Stratford and Burgoyne (2000). Additional references are 
listed in Plaut and Moen (2012). A recent research project 
at the University of Texas at Austin studied the behavior 
of curved steel I-beams during lifting with vertical cables 
(e.g., Farris, 2008; Schuh, 2008; Petruzzi, 2010; Stith, 2010). 
Results of some tests were presented, and the analysis was 
mainly conducted using the finite element software ANSYS. 
A software program called UT Lift was developed along 
with another program called UT Bridge that relates to bridge 
construction.

This current investigation complements the University of 
Texas research. The focus is not solely on steel I-beams and 
the supporting cables may be inclined. Instead of applying 
the finite element method, the results are obtained from new 
analytical equations (Plaut and Moen, 2012) implemented 
as a freely available spreadsheet at http://www.moen.cee.
vt.edu/. However, this study is more restricted in some as-
pects because it does not include nonprismatic beams, non-
symmetric lift points, or the effect of attached cross frames. 

FORMULATION

The beam is depicted in Figure 1. A perspective with in-
clined cables is shown in Figure 1a; a top view in Figures 
1b and 1c; a side view (from the center of curvature) in Fig-
ure 1d; and another perspective in Figure 1e. The unstrained 
beam has radius of curvature R, length L, cross-sectional 
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area A, modulus of elasticity E, shear modulus G, torsional 
constant J, warping constant Cw and self-weight q per unit 
length.

The subtended angle of the beam is 2a, and the cylindri-
cal coordinate θ is zero at midspan. The connection points 
D and K of the two cables are located at the lift points θ = 
− γ and γ, respectively, at a distance a from the near end of 
the beam and at a height H above the shear center and paral-
lel to the y-axis (the weak axis). The line passing through D 
and K, which is dashed in Figure 1e, is called the roll axis 
(or axis of rotation). The inclination angle of the cables from 
the vertical is y toward midspan, and the offset of the center 
of the beam from the chord through the ends is denoted δ.

Figure 1a shows the principal axes y and z of the cross-
section and the longitudinal x-axis, which is tangential to 

the curved axis of the member through the shear center. The 
origin is at midspan, so that x = Rθ. The longitudinal de-
flection is U, the strong-axis deflection is V, the weak-axis 
deflection is W (positive if radially outward) and the angle of 
twist is ϕ. The moments of inertia for strong-axis and weak-
axis bending, respectively, are Iz and Iy.

The center of gravity of the unstrained beam lies along 
the central ray θ = 0 and at a radial distance (eccentricity) 
e from the roll axis, as shown in Figure 1c. If the center of 
gravity of the entire beam does not lie in the vertical plane 
that includes the roll axis, then the beam exhibits a rotation 
about the roll axis, as shown in Figure 1e, until its center of 
gravity lies in that vertical plane. If the beam were rigid, the 
roll angle would be βrigid = arctan(e/H) (Schuh, 2008). The 
deformation causes the actual roll angle β to be different. 

roll axis

K
D

β

R αα

γ γ
θ

y, V

x, U

z, W

ϕ

L

R

α α

γ γ

D Ka a
● ●

center of
curvature

●●
D K

●
e δ

center of
gravity

roll axis

y

x

q

D K
H

ψ ψ

Fig. 1.  Geometry of beam: (a) perspective; (b) top view; (c) top view; (d) side view; (e) rotation about roll axis.
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The total rotation of the plane of the cross-section at location 
θ is βcos(θ) − ϕ, and it is assumed that V, W and ϕ are zero 
at the lift points [so that the total rotation there is βcos(γ)]. 
The equation for β, along with analytical equations that fur-
nish the internal forces and moments, deflections, twist and 
stresses, are given in Plaut and Moen (2012).

The roll angle β is usually zero when a/L is approximately 
0.21 (Schuh, 2008; Plaut and Moen, 2012). For smaller val-
ues of a/L, β is positive, and for larger values of a/L, β is 
negative. As a/L decreases or increases from 0.21, the mag-
nitude of the roll angle increases.

EXAMPLE

Three steel I-beams, similar to ones in Schuh (2008), are 
considered. The beams have δ/L = 0.01, L = 90 ft, R = 1,125 
ft, web depth hw = 69 in., web thickness tw = 0.75 in., flange 
thickness tf = 1.5 in., H = 66 in., E = 29,000 ksi, Poisson’s 
ratio = 0.3 and specific weight = 490 lb/ft3. The cables are 
vertical (ψ = 0). Three flange widths, bf = 12 in., 18 in. and 

24 in., are considered, and the corresponding values of A, 
q, Iy, Iz, J and Cw are listed in Table 1. The effect of the 
normalized overhang length is examined for the range  
0.1 ≤ a/L ≤ 0.4.

Figure 2 shows how the roll angle β varies with a/L. For 
small overhang lengths a, the roll angle β is positive and the 
cross-section tilts so that its top edge moves outward (away 
from the center of curvature), as shown in Figure 1e. For 
large overhang lengths, it tilts in the opposite direction. The 
magnitude of the roll angle tends to decrease slightly as the 
flange width increases from 12 in. to 24 in.

The twist ϕ at midspan is plotted in Figure 3. It is positive 
for an intermediate range of the overhang length and nega-
tive otherwise. Figure 4 depicts how the overhang length af-
fects the twist at the end of the beam (x = L/2). For a given 
value of a/L, as the flange width increases, the magnitudes 
of the midspan and end twist usually decrease.

It has been recommended that the magnitude of the total 
rotation, |βcos(θ) − ϕ|, be less than 1.5° (Farris, 2008). The 
overhang length is critical with regard to this criterion. For 

Table 1.  Properties of Steel I-Beams

bf (in.) A (in.2) q (kip/ft) Iy (in.4) Iz (in.4) J (in.4) Cw (in.6)

12 87.75 0.299 434 65,300 36.7 0.537×106

18 105.75 0.360 1,460 87,600 50.2 1.812×106

24 123.75 0.421 3,458 110,000 63.7 4.294×106
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Fig. 2.  Roll angle versus normalized overhang length a/L.
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Fig. 3.  Twist at midspan versus a/L.
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Fig. 4.  Twist at end versus a/L.
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Fig. 5.  Weak-axis deflection at midspan versus a/L.

0.1 0.2 0.3 0.4

0

0.5

1.0

1.5

2.0

a/L

σ b
y (k

si
)

 

 

bf=12 in.

bf=18 in.

bf=24 in.

Fig. 6.  Longitudinal stress at midspan tip due to weak-axis bending versus a/L.
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Fig. 7.  Longitudinal stress at midspan tip due to strong-axis bending versus a/L.
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Fig. 8.  Longitudinal stress at midspan tip due to warping versus a/L.
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the three flange widths considered, the criterion is satisfied 
at midspan if 0.17 < a/L < 0.29 and at the end of the beam if 
0.14 < a/L < 0.29.

In Figure 5, the weak-axis deflection W at midspan is plot-
ted versus a/L. The roll angle is zero when a/L = 0.211, and 
this deflection W(0) becomes slightly negative for a small 
range around a/L = 0.22. As the flange width increases, the 
midspan deflection tends to decrease.

With regard to possible buckling of the flange due to 
compression, it is important to know the magnitude of the 
longitudinal (normal) stress acting on the cross-section. 
The maximum value occurs at midspan and, in general, is a 
combination of stresses due to axial load, weak-axis bend-
ing, strong-axis bending and warping (Seaburg and Carter, 
1997; Stith, 2010). The first of these stresses is zero here be-
cause the cables are vertical, i.e., ψ = 0. Summing the values 
of the maximum magnitudes of each of the other stresses 
at the tips of the flanges, one can write an upper bound as 
σn = |σby| + |σbz| + |σw|, where the stress contributions at a 
tip at midspan are σby due to weak-axis bending, σbz due to 
strong-axis bending and σw due to warping normal stress.

The longitudinal stress σby due to weak-axis bending is 
shown in Figure 6 for the three steel I-beams. It is highest 
for bf = 12 in. and lowest for bf = 24 in. For all three cases, 
σby = 0 at a/L = 0.21 and 0.25, and σby is very small if the 
lift points lie between those locations.

Figure 7 depicts the longitudinal stress σbz due to strong-
axis bending. This stress is zero at a/L = 0.25. The highest 

magnitude occurs for bf = 12 in., the case with the highest 
ratio A/Iz.

In Figure 8, the midspan stress σw due to warping normal 
stress is plotted. It is zero at a/L = 0.25 for the three cases, 
and again at a/L = 0.40, 0.37 and 0.36, respectively, for bf = 
12, 18 and 24 in. In comparing Figures 6, 7 and 8, the mag-
nitude of σw is larger than the magnitudes of σby and σbz for 
all three cases if a/L is small.

Finally, the sum σn of the magnitudes of these three nor-
mal stresses is depicted in Figure 9. It is zero at a/L = 0.25, 
and elsewhere is highest for bf = 12 in. In the range shown, 
and for these three steel I-beams, the longitudinal stresses 
are not very large. Similar magnitudes were found in tests 
reported in Schuh (2008).

CONCLUSION

The locations of the lift points are most important. If the 
distance between each lift point and the near end of the 
beam is not approximately one-fifth of the beam’s length, 
the beam may rotate significantly and exhibit undesirably 
large displacements and stresses. It is also important that 
the torsional constant and the weak-axis moment of inertia 
not be too small, so that the weak-axis deflection and cross-
sectional twist are not too large. 

Lateral buckling is possible if the beam is perfectly 
straight, but even then it will not occur for reasonably de-
signed beams and lift points (i.e., if the bending stiffness 
and torsional stiffness are not extremely small and the 
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Fig. 9.  Upper bound on magnitude of longitudinal stress at midspan versus a/L.
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beam is not lifted near its ends). The governing equations 
for lateral buckling are presented in Plaut and Moen (2011). 
For the steel I-beams considered here, the corresponding  
90-ft-long straight beam would have a critical specific 
weight that is larger than the specific weight of steel by fac-
tors 2.2, 4.4 and 7.4, respectively, if bf = 12, 18 and 24 in. and 
if the lift points are at the ends (a = 0). The factors are larger 
if the lift points are not at the ends (a > 0).

Results were presented here for steel beams with length 
L = 90 ft, web depth hw = 69 in., offset ratio δ/L = 0.01 and 
vertical cables (ψ = 0). In Plaut and Moen (2011), larger steel 
beams are analyzed, with L = 124.1 ft, hw = 84 in., δ/L = 
0.01276 and ψ = 0. In addition, results are given for beams 
with rectangular cross-section and small initial curvature 
(i.e., an imperfection from a straight beam). The beams have 
L = 150 ft, depth d = 60 in., width b = 12 in. and δ/L = 0.001. 
Cable inclination angles from ψ = 0 to 45o are considered. 
An increase in ψ tends to induce compression in the internal 
portion of the beam and to increase the deformations.

A spreadsheet that implements the Plaut and Moen (2012) 
analytical solution is freely available at http://www.moen.
cee.vt.edu.
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